Modified Topology of SEPIC Converter with High Gain Transfer Ratio for PV Applications

Abdelhakim Belkaid, said aissou, Slimane HADJI, Lylia Larbi

Abstract


This work introduced a modified SEPIC converter with a higher voltage conversion ratio. The configuration was achieved by simply adding passive electronic components—an inductor and a capacitor—to the conventional SEPIC converter. The output voltage generated by the power circuit, including the modified SEPIC, is higher compared to that of the conventional SEPIC, while maintaining the same duty cycle. Furthermore, the modified converter overcomes the parasitic effects of active and passive components in the circuit and produces reduced voltage and current ripples at its output. The modified SEPIC can be utilized in renewable energy power systems and industrial applications requiring high voltage levels.


Keywords


Photovoltaic applications; SEPICconverter; MPPT; High gain transfer ratio; modified DC-DC converter

Full Text:

PDF

References


Abbasi, M., et al.: Using dynamic thermal rating and energy storage systems technologies simultaneously for optimal integration and utilization of renewable energy sources. Int. J. Eng. Sci. 33(1), 92–104 (2020).

Rajesh, R.; Prabaharan, N. Design of New Nonisolated High Gain Converter for Higher Power Density. Int. Trans. Electr. Energy Syst. 2023, 2023, 2011926.

Qun Qi, Davood Ghaderi, Josep M. Guerrero, Sliding mode controller-based switched-capacitor-based high DC gain and low voltage stress DC-DC boost converter for photovoltaic applications, International Journal of Electrical Power & Energy Systems, Volume 125, 2021, 106496, https://doi.org/10.1016/j.ijepes.2020.106496.

Lotfi Nejad, M.; Poorali, B.; Adib, E.; Motie Birjandi, A.A. New Cascade Boost Converter with Reduced Losses. IET Power Electron. 2016, 9, 1213–1219.

Hidalgo, H.; Orosco, R.; Huerta, H.; Vázquez, N.; Hernández, C.; Pinto, S. A High-Voltage-Gain DC–DC Boost Converter with Zero-Ripple Input Current for Renewable Applications. Energies 2023, 16, 4860. https://doi.org/10.3390/en16134860.

Amir, A., Amir, A., Che, H.S., Elkhateb, A., Rahim, N.A.: Comparative analysis of high voltage gain dc–dc converter topologies for photovoltaic systems. Renew. Energy 136, 1147–1163 (2019)

Abbasi, M., et al.: A new transformer-less step-up DC–DC converter with high voltage gain and reduced voltage stress on switched-capacitors and power switches for renewable energy source applications. IET Power Electron. 14, 1347–1359 (2021). https://doi.org/10.1049/pel2.12106

H. Ardi, A. Ajami, F. Kardan, S.N. Avilagh, Analysis and implementation of a nonisolated bidirectional DC–DC converter with high voltage gain, IEEE Trans. Ind. Electron. 63 (8) (2016) 4878–4888, http://dx.doi.org/10.1109/TIE.2016. 2552139.

Rajabi, A., Rajaei, A., Tehrani, V.M., Dehghanian, P., Guerrero, J.M., Khan, B.: A non-isolated high step-up dc–dc converter using voltage lift technique: analysis, design, and implementation. IEEE Access 10, 6338–6347 (2022)

Mahdizadeh, S., Gholizadeh, H., Shahrivar, R.S., Afjei, E., Mosallanejad, A.: An ultra high step-up dc–dc converter based on vmc, posllc, and boost converter. IET Power Electron. 15(10), 901–918 (2022)

Rao, V.S., Sundaramoorthy, K.: Performance analysis of voltage multiplier coupled cascaded boost converter with solar pv integration for dc microgrid application. IEEE Trans. Ind. Appl. 59(1), 1013–1023 (2022)

Alilou, S.M.,Maalandish, M., Samadian, A., Abolhassani, P., Hosseini, S.H., Khooban, M.-H.: A new high step-up dc–dc converter using voltage lift techniques suitable for renewable applications. CSEE J. Power Energy Syst. (2023)

Y. Wang, Q. Bian, X. Hu, Y. Guan, D. Xu, A high-performance impedance-source converter with switched inductor, IEEE Trans. Power Electron. 34 (4) (2019) 3384–3396, http://dx.doi.org/10.1109/TPEL.2018.2853581.

M.A. Salvador, T.B. Lazzarin, R.F. Coelho, High step-up DC–DC converter with active switched-inductor and passive switched-capacitor networks, IEEE Trans. Ind. Electron. 65 (7) (2018) 5644–5654, http://dx.doi.org/10.1109/TIE.2017. 2782239.

Khan, S., Zaid, M., Siddique,M.D., Iqbal, A.: Ultra high gain step up dc/dc converter based on switched inductor and improved voltage lift technique for high-voltage applications. IET Power Electron. 15(10), 932–952 (2022)

Bhupathi Kumar, M.A., Krishnasamy, V.: Enhanced quadratic boost converter based on voltage lift technique for fuel cell powered electric vehicle. Comput. Electr. Eng. 102, 108256 (2022)

Gopinathan, S., Rao, V.S., Sundaramoorthy, K.: Family of non-isolated quadratic high gain dc–dc converters based on extended capacitor-diode network for renewable energy source integration.IEEE J. Emerg. Sel. Top. Power. Electron. 10(5), 6218–6230 (2022)

Liu, L., Li, D., et al.: Novel modified high step-up dc/dc converters with reduced switch voltage stress. Int. Trans. Electr. Energy Syst. 2022(7), 1–24 (2022)

Manuel, A., Andrade, S.S., Faistel, T.M.K., Guisso, R.A., Toebe, A.: Hybrid high voltage gain transformerless dc–dc converter. IEEE Trans. Ind. Electron. 69(3), 2470–2479 (2021)

Qi, J., Wu, X., He, S., Xu, W., Liu, J.: Investigation on the optimal operation and control strategy of a wide-range switched-capacitor/switchedinductor dc/dc converter. IET Power Electron. 16(2), 227–242 (2023)

Faridpak, B., Bayat, M., Nasiri, M., Samanbakhsh, R., Farrokhifar, M.: Improved hybrid switched inductor/switched capacitor dc–dc converters. IEEE Trans. Power Electron. 36(3), 3053–3062 (2020)

Farahani, H.J., Rezvanyvardom, M., Mirzaei, A.: Non-isolated high step-up dc–dc converter based on switched-inductor switched-capacitor network for photovoltaic application. IET Gener. Transm. Distrib. 17(3), 716–729 (2023)




DOI (PDF): https://doi.org/10.20508/ijsmartgrid.v8i4.363.g370

Refbacks

  • There are currently no refbacks.


www.ijsmartgrid.com; www.ijsmartgrid.org

ilhcol@gmail.com; ijsmartgrid@nisantasi.edu.tr

Online ISSN: 2602-439X

Publisher: ilhami COLAK (istinye Univ)

Cited in SCOPUS, Google Scholar and CrossRef