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Abstract- This paper presents the five-level direct power control (DPC) using artificial neural networks (ANNs) controller of a
doubly fed induction generator (DFIG) based wind power generation systems (WPGSs). The validity of the proposed strategies

is verified by simulation tests of an induction generator. The harmonic distortion of stator current, reactive power, and stator
active power are determined and compared to the above strategies. The five-level DPC strategy with ANN controller is shown
to be able to minimize the reactive power, harmonic distortion of stator current, and stator active power ripples and to improve

performance DPC control scheme.
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1. Introduction
The direct torque control (DTC) was first applied for the

induction motor by Takahashi and Depenbrock in 1980°s [1].
This control scheme is simple and easy to implement . In this
strategy, two hysteresis comparators, namely flux and
electromagnetic torque controllers are selected to determine
the inverter instantaneous switching state [2]. In [3], a DTC
strategy was proposed to control PMSM. A DTC technique
was designed to control the DFIG [4]. In [5], a modified
DTC control was proposed based on second order sliding
mode controller (SOSMC) to control DFIG-based wind
power conversion system (WPCS). Similar to the DTC
strategy, a direct power control (DPC) of a DFIG based wind
turbine systems has been proposed recently [6-8].

The DPC strategy is simple and alternative approach
control formulation that does not require decomposition into
symmetrical components, the DPC strategy has been proved
to be preponderant for DFIGs due to the simple
implementation [9]. The basic idea of the DPC technique is a
direct control of the stator reactive and active powers without
any internal control loop or PWM strategy. However, the
DPC techniques obtain fast response time and less
dependence on DFIG parameters [10]. In [11], the authors

propose a three-level DPC control to regulate stator reactive
and active powers of the DFIG-based WPCSs. In [12, 13],
DPC strategy was proposed based on space vector
modulation (SVM) to control DFIG based wind turbine.
Sliding mode direct power control [14]. In [15], a modified
DPC strategy was proposed based on SOSMC controller to
reduced harmonic distortion of current and powers ripples.
Model predictive direct power control [16]. In this paper, a
neural DPC strategy is proposed to control the DFIG using a
five-level neutral point clamped (NPC) inverter. This
proposed control scheme allows reducing the harmonics in
the current, reactive and active powers ripples compared to
conventional five-level DPC strategy and classical DPC
control scheme. Section II is dedicated to the modeling of the
DFIG machine. In section III of this paper, the basic
principles of the proposed DPC strategy has been shortly
introduced. Section IV presents the proposed DPC strategy
with neural networks controller. Section V presents the
simulation results of the both techniques. Finally, conclusion
has given in section VI.

2. Modeling of the DFIG
The doubly fed induction generator dynamic behavior in

a synchronous reference frame can be represented by the



INTERNATIONAL JOURNAL of SMART GRID
Habib Benbouhenni, Vol.3, No.3, September, 2019

Park’s equations, provided all the rotor quantities are referred
to the stator side [17, 18].
Rotor flux components :
Vo =LAy + M, )
Yo = LI ot MI n
Where : War and Wy are the rotor fluxes
L: is the inductance of the rotor
M is the mutual inductance
Lar and Iqr are the rotor currents.
Stator flux components :

l//ds = Ls]ds + M[dr
W(]S = LSIqS + Mlqr
Where : Wqs and Was are the stator fluxes.

Ls is the inductance of the stator.
Stator voltage components :

2

d
I/ds = Rs]ds + Evjds - wsl//qs

i A3)
I/qs = va qs + El//qs + wsde

Where : Vgs and Vgsare the stator Voltages

Rs is the stator resistance

ws : 1s the electrical pulsation of the stator.
Rotor voltage components :

d
Vdr = erdr + Evjdr - a)rl//qr

J “4)
I/qr = erqr + El//qr + a)rl//dr

Where : Var and Vgrare the rotor voltages.
R: is the rotor resistance.

The stator side active and reactive powers are defined as:

f)s :E(Vdslds +Vqs1qs)
2 )
V. 1)

ds™ qs

3
Qs = 5 (Vqs Ids

Where: Ps is the stator active power
Qs is the stator reactive power.
The torque can be written as follows:

3 M
T=2p (v, ~1,¥,) (6)

e 2 :
Where : p is the number of pole pairs.
Te is the electromagnetic torque
The electrical model of the DFIG is completed by the
following mechanical equation:

dQ

T-T=J2217.0 %)
) 7 S

e

Where : Q is the mechanical rotor speed.
J is the inertia
fs the viscous friction coefficient
T is the load torque.
3. Five-level DPC control

The DPC goal is to control the stator active and reactive
powers of the DFIG-based wind energy conversion systems.
This strategy is based on the same control principles as in the
DTC control scheme. In DTC, it’s the rotor flux and the
electromagnetic torque which are directly controlled, while
in DPC strategy, it’s the reactive and active stator powers,
which are directly controlled [19]. The traditional DPC,
which is designed to control stator reactive and active powers
of the DFIG, is shown in Fig. 1.
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Fig. 1 Traditional DPC control.
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The Cascaded H-bridge, Flying capacitor, Diode clamped
inverter (DCI) are the three main different multilevel inverter
structures which are used in industrial applications with
separate dc sources [20]. However, the DCI is one of the
most interesting solutions, to increase power levels and
voltage.

The five-level DCI inverter is proposed in this paper
which overcome the drawbacks of the traditional inverter.
The representation of the space voltage vectors of the five-
level NPC inverter for all switching states is given by Fig. 2
[21].

Fig. 2 Five-level inverter vectors representations.

Active and stator reactive powers is estimated using (1)
and (2) [22].

3 Ln
p=-2 Ly,
3V Vs.Lm
QX - 2 (O'Ls l//rﬂ o.Ls.Lr l//ra) (9)

Where: Lm is the mutual inductance
Wip : is the rotor flux linkage of -axis.
Wi : is the rotor flux linkage of a-axis.

M
lPsotzo-LrIroz—l_L_lPs (10)

N
Where : Vs : is the stator flux linkage of a-axis.
s is the stator flux.
Iie : is the rotor current linkage of a-axis.

lPsﬁ’:GLrIrﬁ’ (11)

Where : Wsp : is the stator flux linkage of B-axis.
Lip : is the rotor current linkage of B-axis.

W
w|="— (12)
Ws
Where : Vs is the stator voltage.
2
o=1- M (13)

L, Ls

The reactive and active powers can be reformulated by
inducing angle A between the rotor and stator vectors as

follows :
3 Llﬂ .
=—=————w, v | |sin(1
F =Ty st (14)
3w M
O, =-= Sy |cos(A) =y |)
TSN v (15)
The derivation of the active and reactive powers can
given by:
dP. 3 Ln d(ly,|sin(2))
dt 2oL 4 (16)
do, 3 Mw (d(v/, cos(i)))
dt  20.LLs v dt (17)

On the other hand, the magnitude of stator flux, which
can be estimated by:

t
\Psa = J.(Vsa - Rs]sa)dt

0

t (18)
W=V 5~ R 1 p)dt

0

Where : Vs is the stator voltage linkage of a-axis.
Vs : is the stator voltage linkage of B-axis.
The stator flux amplitude is given by:

Dy :1/‘{'§a+\P§ﬁ (19)
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The stator flux angle is calculated by :

Os= arctg(m (20)
sa

In five-level DPC strategy a two-level hysteresis
comparator (Fig. 3) is used for the reactive power (Hq) and a
seven-level hysteresis comparator (Fig. 4) for the stator
active power (Hp). Finally, based on the values of constants
Hp and Hq and the position of the stator flux (24 region
control) , the inverter switching algorithm is as shown in
Table 1.

Y
Y
v

Fig. 3 Reactive power hysteresis comparator.
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Fig. 4 Active power hysteresis comparator.

Table 1. Switching table of five-level DPC control

Cfix
1 | 0

N Ccpl

4 3 2 1 0|-1|-2]|-3|-4]| 4 3 2 1 0|(-1]|-2]|-3|-4
1 |24 (2312221 |0 |41 |42 |46 |48 |18 |16 |12 |11 |0 |51 |52 | 53| 54
2 [ 2501231221210 (41 42|49 |50 (20|19 | 12 |11 [0 | 51 |52 53|55
3 (2812627 (121 |0 |41 |47 |53 |54 (24|23 |17 |11 [0 |51 |57 |56 58
4 (3029|2721 |0 |41 |47 |53 |55(25 (23|17 |11 |0 | 51|57 |59 /|60
5 |34 (3332310 |51 |55 |58|28/(26(22]|21|0 1 2 3 4
6 | 3513332310 |51 |52]57]60]30(29]22]21]0 1 2 3 5
7 |38 (36|37 (310 |5157] 3 4 (34133272110 1 7 6 8
8 140 (3937310 |51 |57] 3 5 1351332712110 1 7 9 10
9 | 44 |43 |42 |41 |0 1 2 6 8 |38 3632|310 |11]12]13] 14
10 | 45 | 43 | 42 |41 |0 1 2 9 |10 |40 {39 | 32|31 |0 |11 |12 |13 | 15
11 | 48 | 46 | 47 | 41 | O 1 7 13|14 |44 |43 {37 |31 |0 | 11|17 | 16 | 18
12 | 50 | 49 | 47 | 41 | O 1 7 13 115145 (43 (371310 | 11|17 |19 | 20
13 | 54 |53 152 (510 [ 11 1216 |18 |48 |46 |42 |41 |0 |21 |22 |23 | 54
14 | 55 |53 |52 |51 |0 [ 11 | 12|19 [20 |50 |49 |42 |41 |0 |21 |22 |23 | 24
15 | 58 | 56 | 57 |51 | O | 11 | 17 [ 23 |24 | 54 |53 |47 |41 |0 |21 |27 |26 25
16 | 60 | 59 | 57 |51 | O | 11 | 17 [ 23 | 25 | 55|53 |47 [41 |0 [21 |27 29|28
17 | 4 3 2 1 |0 |21 22|26 |28 |58 |56 |52 (5110 |31]32]33]30
18 | 5 3 2 1 [0 |21 12212930 ]|60 |59 |52 |51|0|31]32]|33]34
19 | 8 6 7 1 [0 |21 |27 (33|34 ]| 4 3 |57 (5110 |31|37]|36] 35
2010 9 7 1 |0 |21 127133 ]35] 5 3 15715110 |31 ]137]39] 38
21 |14 [ 13 |12 |11 [0 |31 |32 |36]|38 ] 8 6 2 1 |0 |41 ]42 |43 | 40
22 |15 [ 13 12 |11 [0 |31 [32]139]40]10] 9 2 1 |0 |41 )42 |43 | 44
23 |18 |16 | 17 | 11 [0 |31 |37 |43 |44 |14 | 13 | 7 1 [0 | 41| 47 | 46 | 45
24 |1 20 [ 19 | 17 | 11 [0 |31 |37 |43 |45 |15 |13 | 7 1 [0 | 41| 47 | 49 | 48
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4. Five-level DPC-ANN control

In order to improve the five-level DPC performances a
complimentary use of neural controller is proposed. The
principle of five-level neural DPC control (DPC-ANN) is
similar to five-level DPC strategy. The difference is using an
neural controller to replace the switching table with stator
active power hysteresis comparator, reactive power
hysteresis comparator and sector as inputs. The switching
(Sa, Sv and Sc) of the inverter will be the control output. As
shown in Fig. 5.

This proposed strategy reduced harmonic distortion of
stator current, stator reactive and active ripples compared to
five-level DPC control scheme. This control scheme is
simple and easy to implement. On the other hand, the
proposed neural controller is the retropropagation of
Levenberg-Marquardt (LM). The parameters of the LM
algorithm is shown in Table 2. The structure of neural
switching table is illustrated in the Fig. 6.

Table 2. Parameters of the LM algorithm

Parameters of the LM Values

Number of hidden layer 12
TrainParam.Lr 0.02
TrainParam.show 50
TrainParam.eposh 1000

Coeftf of acceleration of 0.9
convergence (mc)

TrainParam.goal 0
TrainParam.mu 0.9

Functions of activation Tensing, Purling, gensim

The block diagram of the neural controller of the
switching table is given by Fig. 7. The structure of layer 1
and layer 2 is shown in Fig. 8 and Fig. 9 respectively.
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Fig. 5 DPC-ANN control.
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Fig. 6 Block diagram of the neural switching table.
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Fig. 7 Block diagram of the switching table.
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Fig. 8 Layer 1.
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Fig. 9 Layer 2.

5. Simulation results

The simulation results of five-level DPC-ANN control
scheme of DFIG are compared with conventional five-level
DPC strategy. The performance analysis is done with stator
reactive power, harmonic distortion of stator current and
stator active power. The DFIG used in this case study is a
1.5SMW, 380/696V, two poles, 50Hz; with the following
parameters: Rs = 0.012€Q, Rr = 0.021Q, Ls = 0.0137H, Lr=
0.0136H and Lm = 0.0135H. The system has the following
mechanical parameters: J = 1000 kg.m2, fr = 0.0024 Nm/s.
A. Reference tracking test (RTT)

Figs. 10-11 shows the THD of stator current of the
PMSM obtained using FFT (Fast Fourier Transform) method
for five-level DPC strategy and five-level DPC-ANN
control scheme one respectively. It can be clearly observed
that the THD is minimized for five-level DPC-ANN when
compared to five-level DPC strategy. Table 3 shows the
comparative analysis of THD value.

For the five-level DPC strategy and five-level DPC-
ANN, the stator reactive power and stator active power,
tracks almost perfectly their references values (see Figs. 12-
13).

Stator active power response comparing curves are
shown in Fig. 14. See figure the active power ripple is

significantly reduced when the five-level DPC-ANN control
scheme is in use.

Fig. 15 shows the stator reactive power responses of both the
five-level DPC and five-level DPC-ANN control scheme. It
is found that the proposed DPC exhibits smooth response and
lesser ripple in stator reactive power as compared to the five-
level DPC control scheme.

Table 3. Comparative analysis of THD value (RTT)
THD (%)

Five-level DTC Five-level DTC-ANN

Stator current 2.46 0.71
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6. Conclusion

In this paper, the five-level DPC strategy with neural
controller is presented and it is compared with classical five-
level DPC strategy. The simulation results obtained for the
proposed control scheme illustrate a considerable reduction
in harmonic distortion of stator current, stator active and
reactive ripples compared to the traditional DPC utilizing
five-level inverter.
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