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Abstract- The growing penetration of electric vehicles (EVs) and solar photovoltaic (SPV) systems in radial distribution
networks increases system flexibility, yet poses severe challenges to voltage stability. Conventional approaches like Continuation
Power Flow (CPF) and Jacobian-based sensitivity analysis (JBSA) offer accurate evaluations, but tend to be overly slow because
of resource consumption. This paper proposes a com- bination of a data-driven approach to automate the assessment of voltage
stability with a neural network approach for faster evaluation using a set framework of benchmarking scenario parameters to test
boundary conditions at different levels of EVs and SPV penetration focused around the core elements of thwarting the system
behaviour changes. The methodology strongly focuses around three parameters—\Voltage Stability Index (VSI), Loadability
Margin (LAM), and Generation Admissibility Margin (GAM)—that outline the system’s ability to withstand further injections
of load and generation while keeping the voltage within acceptable limits for stability analysis. The ANN model is developed
with the load flow datasets obtained from the IEEE 33-bus radial distribution system as the training set. Out of all the learning
algorithms used, the best accuracy was obtained with the Levenberg-Marquardt algorithm. This study is novel in its combined
assessment of voltage stability under simultaneous high penetrations of SPV and EVs, which have traditionally been studied
separately. The proposed Feed-forward ANN model uniquely estimates Voltage Stability Index (VSI), Loadability Margin
(LAM), and Generation Admissibility Margin (GAM) concurrently, enabling adaptive, real-time monitoring. Unlike prior
methods, our approach integrates data-driven machine learning with power system analysis for efficient, accurate prediction,
providing practical insights for distribution network operators managing renewable and EV integration. Compared to
conventional methods CPF (20.34 minutes, 7.64 MB) and JBSA (2.86 minutes, 21.90 MB), the ANN requires only 0.6 seconds
and 3.03 MB, demonstrating significant gains in speed and memory efficiency. Results show the proposed ANN-VSI method
effectively forecasts voltage stability margins, offering a practical alternative to traditional methods for real-time stability
assessment in active distribution systems with high renewable energy and electric vehicle integration.

Keywords Solar photovoltaic (SPV) penetration, electric vehicles (EVs), voltage stability, voltage stability index (VSI),
loadability margin (LAM), generation admissibility margin (GAM).

1. Introduction most important because it addresses the increasing electricity

demand that must be satisfied by the distribution network.

Every aspect and activity in a person’s life relies heavily
on electricity. Therefore, an electrical power system can be
viewed as having four main constituents: generation, trans-
mission, distribution, and utilization [1, 2]. The latter is the

Within these configurations, radial, mesh, loop, and network
designs are used to sort out distribution of power to the
customers effectively [3]. However, customer-oriented
utilities tend to focus on radial distributions owing to its
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operational simplicity. Due to the factors like urbanization,
heavy industrialization, and rapid growth in population,
worldwide demand for power has increased significantly in
recent years. This creates additional challenges for power
systems, including voltage instability, which can lead to
blackouts [1]. There has been improvement and shift to
sustainable energy resources to meet constant energy
demands. In India, as of 31st July 2024, the PLI scheme with
an estimated investment of 19,500 crores has resulted in an
installed capacity of renewable energy of 150.276 GW and
87.21 of it being solar photovoltaic sponsored under the
Ministry of New and Renewable Energy.

The increasing integration of SPV systems and EVs
significantly influences voltage profiles in radial distribution
networks. SPV generation can cause voltage rise during peak
solar irradiance periods due to surplus active power injection,
potentially pushing voltages beyond acceptable limits [4].
Conversely, EV charging loads can create sharp voltage drops
during high demand periods, as the increased reactive and
active power consumption stresses the network [5]. The
simultaneous presence of both SPV and EVs results in
complex voltage fluctuations, challenging conventional
voltage regulation methods and risking voltage instability.

While numerous studies have independently examined the
effects of SPV or EV penetration on voltage stability, limited
research has addressed their combined impacts
comprehensively. Moreover, prior works often focus on
traditional analysis methods, lacking adaptive or real-time
assessment tools capable of managing dynamic voltage
changes in highly variable systems. This research addresses
these gaps by developing an Artificial Neural Network
(ANN)-based approach for real-time voltage stability
assessment that accounts for the simultaneous integration of
SPV and EVs, improving decision-making for system
operation and planning.

This paper's novelty lies in the comprehensive
consideration of both SPV and EV impacts on voltage stability
within radial distribution systems, which is relatively
unexplored. Unlike earlier studies focusing on individual
effects or offline assessments, we develop a machine learning-
based framework—specifically, a Feed-forward Artificial
Neural Network—that simultaneously estimates key stability
parameters (VSI, LAM, GAM) in real time. This integrated
approach enables improved voltage regulation and system
planning under dynamic operating conditions, supporting
higher penetration levels of renewable energy and EVs with
enhanced reliability.

1.1. Review of Relevant Literature

The integration of Solar Photovoltaic (SPV) systems and
Electric Vehicles (EVs) is likely to introduce higher levels of
intermittency and uncertainty into both generation and load
demand within the power grid. Many researchers have
analyzed the impact of SPV systems and EV charging on the
operations of the grid, but quite little work has been done on
the combined effect of both on grid stability, energy
economics, and power quality [6-8]. Also, most of the studies
do not address the topic of voltage stability extensively in
distribution networks with high SPV and EV penetrations.

During times of high solar irradiance, SPV systems tend to
increase voltage due to excess generation [9-11], whereas EV
charging tends to reduce voltage during periods of high
demand. The combination of these effects may lead to
enormous and rapid changes in voltage that can overtax
traditional voltage regulating devices and result in voltage
instability or total system failure [12-13].

Several methods are available for evaluating voltage
stability, including P-V curves, Q-V curves, sensitivity
analysis, modal analysis, continuation power flow, and
voltage stability indices [14]. Among these, Voltage Stability
Indices (VSI) have garnered increased attention for online
voltage stability monitoring, as they provide a quantitative
metric to assess proximity to voltage instability in real time.
VSI offer a single numerical value that directly represents the
system’s stability margin, making it easier to understand and
apply compared to P-V and Q-V curves, which require
graphical interpretation. Unlike sensitivity analysis, which
only shows the indirect impact of system parameters on
stability, VSI quantify the true stability margin, offering more
actionable insights.

Additionally, VSI are computationally efficient compared
to continuation power flow analysis, as they avoid iterative
calculations and resource-intensive simulations. This makes
them particularly useful for rapid assessments and real-time
monitoring [15]. VSI also aid in optimizing the placement of
SPV systems and EV charging stations by providing crucial
information on voltage stability margins, enabling well-
informed decisions that enhance system performance.
Therefore, this study employs the VSI to identify strong and
weak buses in the distribution network, facilitating the optimal
placement of SPV and EVs [16].

Recent research has begun to explore the integrated
effects of SPV and EVs on distribution networks using both
conventional and intelligent techniques. A study in [17]
proposed a coordinated control scheme with distributed PV to
improve voltage stability and loadability in a modified IEEE-
9 bus system. Hybrid metaheuristic optimization was applied
in [18] to minimize voltage deviation and unbalance in PV-fed
EV charging stations using Fire Hawk and Whale PSO
algorithms on the IEEE-123 bus system. Comprehensive
reviews such as [19] have highlighted the growing adoption of
machine learning and FACTS devices for real-time voltage
stability enhancement in renewable-dominant networks. A
novel chance-constrained PV hosting capacity framework
under uncertainty using Gaussian Process and Logit learning
was introduced in [20], showcasing improved voltage risk
prediction on IEEE 33- and 123-bus systems. Additionally,
community-level analysis in [21] revealed that EV charging
strategies directly influence PV investments and voltage
stability in low-voltage grids, further emphasizing the need for
adaptive control methods in future planning.

In addition to voltage stability, maintaining loadability
and generation admissibility is critical for ensuring the
reliability and stability of distribution systems with significant
SPV and EV penetration. The loadability margin (LAM)
ensures that the system can handle increased demand from EV
charging without the risk of overload or significant voltage
drops [22]. Meanwhile, the generation admissibility margin
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(GAM) ensures the system can accommodate the variable
output from SPV without causing voltage surges or
overloading network components. Effective management of
these margins allows the system to absorb fluctuations in both
solar generation and EV charging patterns, maintaining stable
voltage levels and preventing operational disruptions.
Achieving this balance is essential for supporting the growth
of renewable energy and electric transportation, while
ensuring reliable distribution network operation. The
estimation of the LAM and the GAM using a machine learning
approach in a radial distribution system is one of the
fundamental ideas introduced in this study for the reliable and
stable operation of distribution systems with significant SPV
and EV penetration. Accurate assessment of these margins is
essential for regulating voltage stability under fluctuating load
and generation conditions.

The attempt made by machine learning techniques,
especially artificial neural net-works (ANNSs), to predict
voltage stability under various system contingencies and
normal steady-state conditions has not succeeded due to the
heavy dependence of these attempts on the feature selection
process. In a number of previous works, several ANNs have
been designed and trained to compute line-based voltage
stability indices and the results have been satisfactory. Goh et
al. [23] showed the effectiveness of ANNSs to predict many
line voltage stability indices (like Lmn, FVSI , VCPI, LCPI,
etc.) in IEEE 9 and 14-bus systems and shown that they could
reliably predict critical lines that were likely to fail due to
voltages collapsing. Sharma et al. [24] also analyzed the
effectiveness of some models such as Feedforward
Backpropagation, Layer Recurrent and RBFN in predicting
FVSI under different levels of reactive loading and stated that
RBFN was the best performer in terms of predicting accuracy.

In this study, the ANN was trained using the dataset
obtained from carrying out power flow studies of the
Distribution system model in different scenarios [25]. Active
power demand, reactive power demand, voltage angle, voltage
magnitude, generated active power, loadability factor, and
generation factor were among the input variables that formed
the training data for the ANN. This comprehensive approach
to voltage stability assessment, combined with machine
learning techniques, aims to improve decision-making in
voltage management and enhance the reliability of distribution
systems with high penetrations of SPV and EVs. Also, this
study used the IEEE 33-bus radial distribution system as a
benchmark for comparison analysis with the proposed VSI
based ANN model, utilizing Predictor-Corrector Continuous
Power Flow [26-27] and Jacobian-Based Sensitivity Analysis
(JBSA) [28] as the primary analytical methodologies.

1.2. Predictor-Corrector Continuous Power Flow

The Predictor-Corrector Continuation Power Flow (CPF)
method is widely used for assessing voltage stability as well
as performing loadability studies in power systems [29]. The
method introduces a continuation parameter called A which
allows for systematic tracing of the power-voltage (P-V) curve
in accordance with incremental loading or generation changes
[22]. The CPF framework uses a two-phase procedure in
which a predic- tor step first calculates the next solution point
based on the current operating point using a tangent vector,

followed by a corrector step which applies Newton-Raphson
iterations to improve the predicted solution. This method
improves reliability of convergence in areas near the critical
point of voltage collapse, where traditional power flow
techniques often have difficulties achieving convergence. The

predictor step computes the next state (Xj+1, ij+ ,) based on

the previous point (x;, A;), a normalized tangent vector z , and
a predefined step size oj. The estimate is expressed as:

X1 _[xj]
|:Ij+1:| pe * 07 1)

Subsequently, the corrector step ensures that the solution
satisfies both the power flow equations f (x, /) = 0 and a
parameterization constraint. This paper employs a pseudo arc-
length formulation to ensure numerical continuity across
turning points defined by [24]:

x—x1" _
=[5 _ 5] a-a=0 @

However, a notable disadvantage of this method would be
the heavy computational time, especially when it comes to
larger systems demanding many continuation steps and
corrections.

1.3. Jacobian-Based Sensitivity Analysis (JBSA)

The JBSA approach provides an analysis technique using
the Jacobian matrix obtained from the power flow equations’
linearized set to study the impact of active and reactive power
injections on the voltage level at the buses, assuming the bus
voltage magnitudes operate within a specific value. This
approach stems from the Newton Raphson method where the
nonlinear power flow equations are solved using first-order
Taylor series expansion about an operating point. Such
approach defines the Jacobian matrix J, which is composed
of partial derivatives of power injections with respect to
voltage magnitudes and angles, as a basis for sensitivity
calculation. Quantitative sensitivity computation comes of
matrix inversion that expresses small perturbations on power

as [28]:
[221=1"[10

where AP and AQ are incremental changes in real and
reactive power, and AJ and AV are the corresponding
variations in voltage angle and magnitude. Although JBSA
provides an organized structure based on mathematics for
performing voltage sensitivity analysis, it has considerable
constraints concerning its usage in radial medium voltage
distribution systems, and it also uses much more storage on
computer memory.

1.4. Contribution and Paper Organization

Compared to the existing literature, this paper offers the
following

> It analyzes the scope of the impact concerning the
individual and synergistic effects the SPV and EVs
have on voltage stabilization in a distribution system.
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> It determines strong and weak buses in the
distribution network with the help of VSI, thus
facilitating appropriate location of SPV system and
EV charging stations.

> It defines the limits within which the dual parameters
LAM and GAM for selected buses are maintained to
ensure system resiliency and reliable operation for
different load and generation profiles.

> |t constructs, trains, and validates a Feed-forward
ANN model for VSI, LAM, and GAM estimation at
the selected buses using various algorithms, thereby
enabling real-time adaptive voltage stability
monitoring and responsive intervention.

> |t analyzes JBSA and the conventional method of
Predictor-Corrector Continuous Power Flow against
the proposed VSl-based ANN method, thus
enhancing under- standing of the former’s efficacy.

The rest of this paper is structured as follows: In Section
2, the fundamentals of volt- age stability are discussed, which
includes the definitions and formulations of Voltage Stability
Index (VSI) as well as LAM and GAM. In Section 3, |
provide detailed explanation of the proposed ANN-based
estimation technique of VSI, LAM, and GAM. The Section 4
offers commentary on the results obtained from the
simulations and discusses them further. In the concluding
section, provide definitive remarks while clarifying the
principal findings of this study in Section 5.

2. Fundamentals and Definitions

The importance of maintaining an adequate voltage level
in radial distribution systems is of core interest in dependable
power delivery, more so in systems with a pronounced blend
of renewable energy technologies and electric vehicles.
Moreover, due to the simple and single-path nature of radial
systems, which is easily subjected to changes in load and
distributed generation, radial systems are more susceptible to
voltage deviation. This part seeks to explain the most voltage
stability aspects of radial networks along with the
fundamental and important definitions in regard to voltage
stability in such networks.

2.1. Voltage Stability

“Voltage stability” describes a power system’s efficacy in
maintaining the voltages at each bus within reasonable
bounds nearby the nominal value, and also requires that no
singularities arise from flexible disturbances [30]. It is
fundamentally connected with how well the system can
balance the supply and demand of the electric load.

Table 1. Comparison of VSI based on analytical approach

Voltage instability is often observed as slow decay or
increment of the voltage level at some particular bus. The
addition of SPV systems and EVs to distribution networks
brings new challenges that can worsen voltage instability.
Fluctuating solar power generation and the nonexecutable
nature of load forecasting such as EV charging impose
tremendous voltage deviation. The overvoltage phenomenon
that may occur during peak solar irradiance periods is due to
excess power produced when the local distribution network
is poorly designed or equipped to control these fluctuations
[31]. At the same time, these systems can be further
exacerbated by additional EV demand during charging
periods which stresses the infrastructure, resulting in further
voltage depression or oscillation and system destabilization.

2.2. Voltage Stability Index (VSI)

The VSI metric is a quantitative measure used to gauge
the voltage stability of power distribution networks. It
enables the online operation of the system, indicating the
stability margins and maximum loadability of the system’s
various elements. VSIs serve to determine possible weak
areas, like transmission or distribution lines or buses, that
need detailed compensation or reinforcement by evaluating
these factors. VSIs can be assessed on different levels from
single distribution lines, buses, or for the entire network,
allowing for comprehensive evaluation of the stability
analysis.

Using IEEE 14 bus model system of South Yorkshire,
VSIs are calculated to pinpoint weak and strong voltage
stability nodes in distribution system. This is highly useful in
the case where DERs such as SPV systems are to be
integrated optimally and when planning for grid EV charging
stations. Through the distribution grid level set lower bounds
for adjustable set points at weak buses to enhance voltage
stability, reduce voltage collapse risk, and energy distribution
efficiency in the grid.

According to [14, 32], VSIs can be taught modulating like
wigs in different photographs because of their methodologies
and context of usage.

> VSI based on Jacobian matrix’s operations
> VSI based on the system variables

> VSI Global, Bus, Line and individual VSI

Jacobian matrix-based VSI

System variables-based VSI

Suitable for offline applications

Suitable for online applications

Determine the voltage stability margin

Identify the weak busses or lines

Require more computational time

Require less computational time
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Table 1 analyzes the classification and merits of different
types of VSI. Although these methods are accurate, they are
highly complex calculations and very sensitive to changes in
topology, as changes to the network cause its formulae to
recalculate its Jacobian matrix. This makes weakly monitoring
voltages in real-time via a Jacobian — S-map order
discrimination matrix approach impractical [33]. Also, with
these methods, their longer calculation time increases the level
problem of integrating distributed generation (DG).

However, system variables based models are better focused to
real time purposes, since they have lower computation
workload. These types of models fall short though because
they overestimate the severity of voltage instability and thus
fail to provide useful boundary information completeness of
VSM assessment [34].

Table 2 presents the classification of VSI into three types
along with their advantages and disadvantages: line-based,
bus-based, and global indices. Each type of VSI has merits and
demerits. The former analyzes the stability aspect of voltage
through transmission lines, measuring the ability of each line
to maintain voltage level under load growth. These indices
enable grid operators to disable further load increases before
critical in- stabilities occur on certain voltage levels. Bus-
based VSI measures the voltage stability of particular nodes
or buses in the network and the level of each bus to collapse
voltage [35]. Some important indices are VCPI [36] and L-
index [37], which analyses voltage instability from point of
view of a bus at certain load and give information about those
busses which are near minimum under voltage region with
some sanity for grid system. Finally, global indices offer
holistic assessment of voltage stability from the point of view
of entire power system.

Table 2. Comparison of VSI based on specific focus area

These indices utilize number of system-wide parameters
which include evaluation of flow of load in the network, to
assess the overall stability of the system and the vulnerabilities
on which inference can be drawn at higher level.

In order to facilitate the implementation of SPV and EVs, this
research paper employs a bus VSI to identify weak and strong
buses in the radial distribution system [16, 38, 39, 40]. Figure
1 illustrates a simplified two-bus equivalent distribution
network that helps how VSI for a specific bus j, i.e. VSI; is
determined using Equation (3) given below [16].

VSIj= V4 —4(PjRij+ QjXi)Vi® — 4(P; Xij— QjRij)? ®)

Vi Vi

PiiQy
Fig. 1. Simplified distribution network.

Where, i and j are the sending and receiving buses; Pj and
Qj are total effective active and reactive power at the receiving
bus; and R; and Xj; are the line resistance and reactance
between the buses i and j respectively. In a distribution system,
the Voltage Stability Index (\VSI) varies between 0 and 1.

The system’s ability to effectively maintain voltage levels
under varying load conditions is indicated by a value of 1,
whereas a value of 0 indicates a high susceptibility to voltage
collapse and very low voltage stability.

Type Merits Demerits
Line VSI (i) Simple and easy to implement (ii) Identifying (i) Lower accuracy (ii) Energy
sensitive lines (iii) Appropriate techniques for flow constraints limit the ability of most indices to
determining the network’s stability (iv) Reduced | predict system behavior beyond the collapse point
computation time
Bus VSI (i) Useful for real-time ap- (i) Implementation of these indexes are more
plications (ii) Identifying sensitive buses (iii) Simple challenging
and easy to implement
Global (i) Better accuracy (ii) Better (i) Has limitations when used
VSI tool for predicting power system instability and to radial systems (ii) Complexity in calculation
transmission capability

2.3. Formulation of Loadability Margin (LAM)

The LAM monitors the maximum additional load which
the distribution network can stand without collapsing,
particularly with respect to rising EV charging demands. The
coming of EVs into the market brings about abrupt changes in
grid demand, which if not properly controlled, can result in
systems being overloaded, voltage drops, and or even system
instability. To ensure these effects, to guarantee proper
operation within the system while minimizing disruption, it is
needed to preserve an adequate level of adaption management
typically illustrated by a P-V curve.

For calculating LAM, this study computes in intervals the
active and reactive power demand of specific buses in the
distribution system. More specifically, the buses with the
maximum VSI values are analyzed and determined to be the
most durable. Strong buses with high initial VSI values
comprise Buses 2, 3, 4, 20, 23, 26, 30, and they serve as the
basis for EV load placement. As for EVs, they are represented
as basic dynamic loads at the bus level which further increases
the demand for active and reactive power in Grid- to-Vehicle
(G2V) mode with a loading factor A. As per equations (4) -
(6), they will be gradually adjusted according to a predefined
strategy [41].
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This modeling reflects typical real-world usage, where
the majority of EVs draw power from the grid without
supplying it back. While vehicle-to-grid (V2G) operation
enables EVs to act as distributed energy resources by injecting
power into the grid during peak demand or voltage instability,
V2G functionality is intentionally excluded from this work as
the study simultaneously incorporates significant penetration
of solar photovoltaic (SPV) generation, which introduces
variability in voltage profiles and acts as a form of distributed
generation. By limiting EVs to G2V mode, the study isolates
the effects of EV charging demand on the distribution
system’s voltage stability and availability margins under
fluctuating SPV conditions. This provides clearer insights into
the challenges posed by increasing EV adoption when
combined with intermittent renewable generation.

Pdjnew = Pdjoa(1 + 1) 4)
Qujnew = Qujora(1 + 1) (5)
A= Xoid + Od ©6)

In the previous iteration for bus j, real and reactive power
demand are denoted as Pgj g and Qg; o1, respectively. Also, for
bus j, new adjusted values of increased loading factor A are
noted as Pgjnew and Qugjnew With 84 rate. Hence, the divergence
of load flow is defined to capture the maximum loadability
threshold. This process is repeated until the system arrives at
its voltage stability point, thereby defining the upper LAM
limit. The algorithm to compute the upper limit LAM for the
chosen buses is displayed in Figure 2.

Figure 2 shows the LAM and GAM Margin estimation
work flow employing the IEEE 33-bus radial distribution
system. Initially, a base case study of load flow checking is
carried out to determine voltage (Vi) at the bust’s, power’s
elements (P;, Q;) and also line parameters (Rjj, Xj;). As a result,
The VSI (VSI;) is computed for each bus. Then it branches
into two portions, the weaker one corresponding to the bus
with minimum VSlI; for generation increment (Pgj) estimate
GAM, and to the strongest one corresponding to the bus with
maximum VSI; for load increment (Pqj, Qqgj) and estimate
LAM. This step is practically executed by successively
adjusting the generation or load, performing load flow
analysis in each step while updating the VSI until Voltage or
Vice state indicator constraints are breached. Under those
conditions, the final outputs for A and € values are retrieved as
maximum LAM and minimum GAM values correspondingly.
The method provides voltage stability limits of the tested
buses when subjected to increasing loading or generation
increments.

In the described approach, VSljmin and VSljmax denote the
minimum and maximum bounds of the VSI (Voltage Stability
Index) value measures across all buses in the base case load
flow which is the basic range for controlling generation and
load stepping loops to maintain stability with designated
values 0 < VSIj< 1 and 0.95 <V; < 1.05.

2.4. Formulation of Generation Admissibility Margin
(GAM)

It is crucial to estimate the GAM to manage the variability
of SPV generation. The supply demand equilibrium is affected
by the intermittent power generation caused by SPV systems.

The GAM marks the boundary of generation increase which
does not destabilize the system. The distribution system can
maintain stability and cope with the oscillations created by the
penetration of solar power if this margin is preserved. The real
power at the selected buses with lower VSI values in the
distribution system is gradually increased by a generator factor
¢ defined in Equations (8)-(9) for the purposes of calculating
GAM. Buses such as 7, 8, 16, 19, 24, 32, and 33 with low VSI
values are identified for optimal selection for SPV integration,
considering them as simple generators to evaluate power
system voltage stability for stressed case scenarios assuming
the bus is a PQ type and converted to PV type once Pg > Pp
while power at the bus is determined using the equation,

Phet = de,gen - ng,new (7)
ng,new = ng,old(l + €) (8)
€ = €o1d + Og )

Here Pg; 0le means the real power that was injected earlier,
and Pg;j new are the new updated power values after a generation
change € is applied at rate dy. The algorithms for estimating
the maximum GAM for the selected buses is also explained in

Figure 2.

Consider TEEE 33 bus system as test system,
Run load flow analysis for Base Case

Read Vi, Pj, Qj, Rij and Xij

Calculate VSI

Pd j,new =Pd j,old(1 + )
Qd j.new =Qd j,old(1+ i)

Check
0<VSI<1.05

Check
0<VSI,<L05
&

&
L 9<Vi<1.0;
No

[ Store & and load flow results }

[ Store 1 and load flow resules |

End I

Fig. 2. Flowchart for estimation of maximum loadability
margin (LAM) and generation admissibility margin (GAM).

3. Methodology of the Proposed Artificial Neural
Network Based Estimation of VSI, LAM and GAM

The VSI in this context refers to system’s ability to
maintain the definition of stable system voltage under
fluctuations from renewables or EV loads. LAM is how much
more extra load is added to the system to make it unstable, and
generation margin is the system capability to service load
compared to available generating resources. With the help of
estimating VSI at a bus, combining with LAM and GAM
using ANN, it is possible to integrate the SPV and EVs
reliably to the radial distribution system. ANNs plays
significant roles in estimating and maintaining voltage
stability.
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Prior works, including in [22], suggested the application
of various machine learning techniques like artificial neural
networks (ANNS) and support vector machines (SVMs) for
forecasting LAMs or voltage stability. This work employed a
machine learning approach with a Feed Forward ANN model
to predict VSI and availability margins in distribution systems
with high SPV and EV penetration. Figure 3 illustrates the
ANN-based method diagram for evaluating stability in a radial
distribution system 3.

B

Input | Paj, Qdj,Vi,Va,Pgi, 1, &

—

Test
distribution
system

O,
o
O

58D

Calculation of
VSI, LAM and
GAM

ANN

Stability
Assessment

Test dataset

/ Load flow analysis by Newton

K Raphson method : MaTrewER! / /

Fig. 3. Proposed ANN-based system for stability
assessment.

3.1. IEEE 33 Bus Test System

The IEEE 33-bus radial distribution system is used as a
test bed in this study to enable the examination of voltage
stability assessment, as illustrated in figure 4. An example of
a medium-voltage distribution network is the IEEE 33-bus
system, which consists of 33 buses and 32 branches and
operates at a nominal voltage of 12.66 kV [42]. This test
system is well known for assessing how distributed energy
supplies affect stability margins and voltage profiles [43]. As
shown in figure 4, the particular buses assigned to SPV
integration and EV charging station penetration are identified.
The dynamism and complexity of the system are increased
when EVs and SPV systems are integrated. Significant SPV
integration influences voltage profiles and power flow
because to its variability, whereas EVs provide extra load,
potentially resulting in under voltage circumstances. The
integration of SPV and EV proliferation in the system
intensifies voltage stability issues.

Solar Photovoltaic (SPV) systems are considered as
distributed generators (DGs) placed at respective buses and
are treated as conventional generation sources; in case their
active power flows (output) is more than the local demand (Ps
> Pp), the corresponding bus will switch from PQ to PV mode
to enable voltage control operation. In this configuration,
electric vehicles (EVs) are modeled as dynamic secondary
loads that increase both active power and reactive power at
particular buses in Grid-to-Vehicle (G2V) mode. This
provides the fluctuation potential of renewable generation
together with the variability of load due to EVs. This paper’s
load modeling takes into consideration both the base loads of
the IEEE 33-bus network as well as the additional ones
resulting from EV integration at certain buses. In selected
buses, EV loads are added incrementally while the original
residential and commercial loads at all other buses are kept.
This guarantees that the existing network demand along with
the new EV loads is accurately captured, providing analysis
into the depth of voltage stability and system interactions.

23, w4 28

Fig. 4.Schematic of IEEE 33 bus radial distribution system
with EV and SPV penetration.

To obtain the necessary initial datasets for ANN training,
load flow solutions of the IEEE 33-bus radial distribution
system with varying penetration levels of SPV and EVs are
considered. Data required for the calculation of VSI are
obtained through load flow analysis of the distribution system
using the MATPOWER. After determining the VSI for the
base case, buses with low VSI values are identified for SPV
installation, while buses with higher VVSI values are designated
for EV charging infrastructure.

3.2. Architecture and Training of the ANN

ANN can learn complex non-linear input-output
relationships through training without the need for explicit
programming. Due to this learning ability, they perform
effectively even in untrained scenarios. This study utilizes
ANN’s capability to estimate the VSI and availability margins
in distribution systems under high SPV and EV penetration.

The efficiency of a neural network is critically dependent
on the selection of input variables. The input variables selected
for this research include active power demand (Pgi), reactive
power demand (Qgi), bus voltage magnitude (V;), voltage
angle (), real power injected (Pgi) by SPV, loadability factor
(4), and generation admissibility factor (¢). In this work, the
choice of input variables is based on their impact on voltage
stability as well as alignment with the Jacobian-Based
Sensitivity Analysis (JBSA) benchmark. A JBSA’s primary
function is to assess the measure of sensitivity of a system’s
voltage to a set of controllable parameters designated as: as
(Pdi), (Qai), and (Pgi). Likewise, state variables Vi and O
represent power flow analysis and form a basic kernel needed
to describe the system behavior over a range of operating
conditions. Moreover, 4 and ¢ serve as high level voltage
instability indicators. This unique blend guarantees that the
ANN captures stability margins at nodal level and system
level, making possible the use of more common analytic
approaches. Taking into account the selected input variables
from the 33 buses, the input pattern for the neural network
consists of 7 arrays of 33 variables, each as input. VSI, LAM,
and GAM are selected as output variables for the ANN to
evaluate voltage stability in a radial distribution system with
high penetration of SPV and EV, so the output pattern for the
neural network consists of three arrays of 33 variables each as
output. The model can efficiently assess and track voltage
stability by training the ANN to anticipate these output
variables. This enables proactive management and
optimization of the distribution network in various scenarios
of integrated energy and electric vehicle charging stations.
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Artificial neural networks (ANNSs) predict these output
variables. Thus, the model efficiently analyzes and regulates
voltage stability. This simplifies proactive monitoring and
updating of distribution networks in scenarios with the
integration of electric vehicle charging stations and distributed
energy. Electric vehicles and distributed energy are integrated
in these situations. Thus, a distribution system with 33 buses
will have three arrays with 33 variables each as its output
pattern.

An artificial neural network with a single hidden layer
made up of ten neurons was determined to be the best
architecture for the suggested system after iterative testing.
The ANN architecture is shown in Figure 5. The ability of a
feed-forward artificial neural network to incorporate
nonlinearity and recognize complex patterns is evaluated
using nine different activation function combinations.
Because they can efficiently link input to output without the
complications that come with recurrent architectures, feed-
forward artificial neural networks are preferred. For
comparative analysis, four training algorithms are also used:
Resilient Propagation, Scaled Conjugate Gradient, Gradient
Descent with Momentum, and Levenberg-Marquardt.

Feedforward ANN with 7 inputs, 10 Hidden, and 3 Output Neurons

Paj

Input Layer €

Hidden Layer € R

Fig. 5. Architecture of ANN.

Output Layer € &2

3.3. ldentification of Possible Scenarios and Generation of
Data Set for Training and Validation of ANN

The identification of potential scenarios and generation
data sets for voltage stability assessment and prediction of
availability margins in the IEEE 33 radial test distribution
system requires investigation of various penetration levels of
SPV and EV. Scenarios for SPV penetration need to take into
account how the variable nature of solar generation affects
voltage stability and the system’s capacity to accommodate
additional generation demand, i.e., GAM. When it comes to
EV penetration, the emphasis switches to how more charging
loads impact LAM, along with any possible voltage drop
issues during peak charging periods.

When both SPV and electric vehicles are present,
scenarios must account for the dual effects of increased
demand from electric vehicles and variable output of the SPV.
This combined analysis helps predict the voltage stability of
the system under varying demand patterns and fluctuating
generation conditions. It also helps to evaluate the GAM by
figuring out how much additional generation can be added to

the system while maintaining voltage stability, as well as
LAM by determining the maximum load the system can
handle before voltage problems occur.

Conventional power flow analysis is employed to
generate datasets across various EV and SPV penetration
scenarios. The first step is the calculation of the VSI for the
base case scenario in the IEEE 33-bus radial distribution
system to identify buses with lower VSI values. The identified
buses are subsequently supplemented with SPV generation,
which is gradually increased until the bus voltage magnitude
(Vi) remains within the safe range of 0.9 to 1.05 per unit and
the VSI is maintained between 0 and 1 to ensure stable
operation. When the generation surpasses the load demand at
a specific bus, the bus is converted into a PV bus, which
signifies its new function in promoting voltage stability and
improving the overall reliability of the system. In this research
work a total of 116 scenarios are generated for various levels
of SPV penetration case. The SPV generation at the specific
buses was incremented by 10% units of the local load until the
generation surpassed the demand (P > Pp), as well as voltage
magnitudes and VSI (0.90 pu < V;<1.05pu, 0 <VSI<1)
reached their limits.

The second case of the analysis, EV charging is treated as
an extra load in the IEEE 33 distribution system. This load is
applied to the buses with higher VSI values in the base case
scenario. The load is increased until the bus voltage magnitude
(i) and VSI remains within the specified limits to maintain
voltage stability. The impact of this load increase is
penetration extensively investigated by generating a total of

428 scenarios, which enables a detailed evaluation of the
impact of varying levels of EV charging on system
performance and stability under these constraints. In the same
manner, EV loads were added at the selected buses in 10%
steps of the base load until the VVSI becomes 0, indicating the
stability boundary, and bus voltages remained within
acceptable limits.

In the third case, both SPV and EV charging stations are
considered simultaneously. In order to conduct a
comprehensive analysis of the effects, 658 different scenarios
were created. SPV systems and EVs are integrated
simultaneously at identified buses into the IEEE 33 radial
distribution system to examine the combined impacts on
voltage stability. To evaluate the effect on the voltage profile
of the system, this scenario included gradually increasing the
penetration levels of SPVs and EVs. The analysis was
specifically designed to ensure that the VSI and voltage
magnitudes (Vi) remained within predetermined limits as the
penetration levels of SPV and EV were increased. This was
done in order to assess the impact of integrating EVs and SPVs
at the same time on voltage stability and to determine the
maximum penetration levels that the system is capable of
handling without affecting stability.

Table 3 gives the detailed summary of scenarios generated for
the three different cases. The dataset is divided into 70% for
training, 15% for validation, and 15% for testing in each of the
categories, with 841 training samples, 180 validation samples,
and 181 testing samples from a total data set of 1202.
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Table 3. Various possible scenarios of SPV and EV

SI. No ‘ Load Bus ‘ Generation Bus ‘ No. of Scenarios
Base Case
] | | 1
With SPV Penetration
2 7 12
3 8 12
4 16 22
5 19 22
6 24 13
7 32 13
8 33 22
With EV Charging Station
9 38
10 61
11 4 33
12 20 47
13 23 130
14 26 104
16 30 14
With SPV and EV Charging Station
16 7 39
17 8 63
18 4 16 39
19 20 19 57
20 23 24 109
21 26 32 121
22 30 33 11
23 3,20 24, 32 46
24 2,3,4, 16, 24, 33 39
25 2, 4,20, 26, 8, 16, 32, 33 39
26 4,20, 23, 26, 30 7,8 22
27 3,4 16, 19, 24, 32, 33 45
28 2,3,4,20, 7,8,16,19 28
23, 26, 30 24,32, 33
Total 1202

3.4. Computational Efficiency and Model Complexity

The computational efficiency of the ANN-based voltage
stability estimator depends on both the ANN architecture and
the complexity of the distribution network model used for
training and inference.

From the ANN model perspective, the current feed-
forward network size was selected to strike a balance between
predictive accuracy and resource usage. While reducing the
number of neurons or layers can decrease prediction time and

memory footprint, preliminary experiments showed that
smaller networks compromised the accuracy of Voltage
Stability Index (VSI), Loadability Margin (LAM), and
Generation Admissibility Margin (GAM) predictions. Thus,
the current ANN architecture provides reliable results within
a reasonable computation time and memory usage.

From the distribution network perspective, reducing the
network size (e.g., simplified models with fewer buses or
aggregated loads) would reduce the dimensionality of ANN
inputs, leading to smaller networks and faster computation.
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However, such simplification may limit the model’s
applicability and accuracy in representing voltage stability
issues at a detailed level, especially in radial distribution
systems with high penetration of solar photovoltaic (SPV) and
electric vehicles (EVs) on each and every busses. Maintaining
a sufficiently detailed network model is essential to capture
spatial variability in voltage profiles and stability margins
accurately.

It is important to note that the present study employs an
offline, background evaluation approach, wherein the ANN is
trained and validated using extensive simulated datasets
generated from power flow analyses under various system
conditions. This offline training framework allows for the use
of more complex models without the computational
constraints inherent in real-time processing. Once trained, the
ANN model can be deployed for near real-time voltage
stability monitoring and decision-making of the system with
considerable change in system conditions, where the achieved
prediction latency of fraction of second is acceptable for
operational use. The system used to run the ANN-based model
features an 11th Gen Intel Core i7-11370H processor with a
base clock speed of 3.30 GHz and 16 GB of RAM, which
provides sufficient computational power and memory
bandwidth for fast execution of lightweight neural networks.
Its strong single-core performance facilitates rapid inference
even without dedicated hardware accelerators, which justifies
the model’s quick prediction time and minimal memory
consumption.

3.5. Generalizability and Applicability to Real-World
Distribution Networks

Though the proposed ANN model is developed and
validated on the IEEE 33-bus radial distribution system, it
ensures generalizability towards any real-world distribution
network through multiple design considerations as follows:

> ltis trained on a wide range of operating conditions
(varying load, SPV, and EV penetration) to capture
general voltage stability behaviours beyond a single
network.

> Input features—active/reactive power, voltages,
loadability, and generation factors—are
fundamental electrical parameters common across
most radial distribution networks.

> The ANN architecture is adaptable and can be fine-
tuned and retrained with any real-time distribution
system data to accommaodate different network sizes
and topologies.

> The ANN framework supports retraining with
suitable input output vectors with realistic data of
any target practical distribution network, enabling
the model to incorporate system-specific
characteristics.

Hence, this comprehensive approach ensures that the
proposed ANN model maintains accuracy and reliability
when applied beyond the benchmark IEEE 33-bus system,
validating the model on larger, real-world distribution
systems to confirm scalability and robustness.

4. Simulation Results and Discussion

The proposed methodology is simulated in IEEE 33-bus
radial distribution system as a test bed using MATLAB. The
ANN, as described in Section 3.2, is employed to estimate the
VSI, LAM, and GAM for the selected test system. The dataset
generated, as described in Section 3.3, is used for training,
testing, and validating the proposed voltage stability
assessment.

4.1. Performance of the Trained ANN

Every input pattern for the ANN consists of 231 inputs
from the IEEE 33 distribution system and, as outlined in
Section 3.2, the output pattern contains 99 outputs. After a
number of cycles in testing, the chosen architecture in their
ANN, which used the tan- linear activation function with the
Levenberg-Marquardt training algorithm, demonstrated
optimum results. This architecture had 10 neurons in the
hidden layer, as shown in Figure 6, which is discussed below.

Hidden Layer
Input
™ ﬁ ol
231 n —
10

Fig. 6. ANN architecture for IEEE 33 bus distribution
system.

Validation of the ANN-based voltage stability
assessment

Output Layer

OQutput

Ly

99

4.1.1.

The regression coefficient R is main metric for assessing
the relationship of a goal with input values in a given
predictive model. A correlation result of 0% means there is no
relation at all which implies that results are totally random
relative to the targets while a value of 100% defines perfect
correlation meaning that results are greatly correlated to the
objectives. This metric shows how well the predicted results
match the actual values of the goal. 7 demonstrates a bar graph
depicting all the R values obtained from the four distinct
strategies of training functions with the corresponding
evaluation done across a total of nine combinations of
activation functions. This form of presentation makes it easy
to gauge how well each algorithm performs in comparison to
the set tar- gets that were provided. In order of preference,
various training functions were tested for the ANN model to
establish the best training algorithm for the system under
study. This strategy guarantees the best result in both accuracy
and generalization, and function se- lection was carried out
through comparative evaluation. In the evaluation of all R
values, the Levenberg-Marquardt (LM) approach is repeatedly
claimed to outdo all competitors in every evaluation. This
means that he offers the best and most reliable estimates when
made in comparison to all other alternatives available.
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Comparison of R value for different training algorithms
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Fig. 7. Comparison of R value for different training
algorithms.

Figure 8 illustrates how the mean squared error (MSE) is
computed over several training epochs. In table 4, the best
prediction accuracy for various training algorithm and
activation function combinations is presented. This shows has
shown delved into how varying training techniques and
activation function settings impact the predictions. The
average lowers the MSE, the more effective the model is
considered. Performance analysis demonstrates that the Tan-

Lin activation function maintains accuracy and reliability
throughout a range of operational training strategies.

Best Validation Performance is 0.0030039 at epoch 41
10'F :

Train
Validation
Test

Best

-
o
©

Mean Squared Error (mse)
=)

102
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103 A . . L ) : . . .
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47 Epochs

Fig. 8. Variation in mean-squared error of LM algorithm
with tan-linear activation.

Table 4. Comparison of regression values (R) for different activation function

Activation Levenberg- Gradient Descent Resilient Scaled Conjugate
functions Marquardt with Momentum Propagation Gradient
Tan-Log 0.42803 0.34527 0.42132 0.42763
Tan-Lin 0.99649 0.87492 0.98687 0.98964
Log-Tan 0.99613 0.25272 0.97302 0.98777
Log-Lin 0.98973 0.65136 0.96381 0.9939
Lin-Tan 0.99537 0.65291 0.47957 0.43728
Lin-Log 0.42209 0.35641 0.42806 0.40133
Log-Log 0.43175 0.35718 0.45674 0.39465
Lin-Lin 0.99636 0.021886 0.98623 0.99373
Tan-Tan 0.99578 0.81205 0.98281 0.98898

The model improves most between the 60th to 70th epoch,
showing nearly 0.0022782 MSE at epoch 65, proving
strongest error reduction. R values during advance the
summarized obtained during training, validation, testing
phases of LM with tan linear activates is demonstrated in
figure 9. This figure summarizes the R values obtained during
the training, validation, and testing phases of the LM
technique with a tan-linear activation function. The results
confirm that the LM algorithm is consistent and dependable in
its performance, particularly in conjunction with the tan-linear
activation function. The illustration proves the reliability and
efficiency of the LM algorithm, showcasing its robust
performance.

4.2. Analysis of the Results and Discussion

4.2.1. Case-1: SPV penetration at selected busses

SPV systems incur smaller values of VVSI on Distribution
buses, thus they are integrated into system buses. In order to

illustrate the changes in bus voltages for the various scenarios
associated with SPV integration, which include results from
Scenarios 2 to 8 as stated in table 3, which is illustrated in
figure 10. For a given scenario at a time, all buses voltage
magnitudes were captured. The graph indicates that there is an
extent to which generation exceeds load demand, which
causes the PQ bus to convert to a PV bus, voltage boostering
at 1.05 pu and voltage steadiness at the same time and further
improving a dependable system with enhanced modular solar
power. The generating margin is the region within which
additional capacity could be supplied below the limits stated
and increase the possibilities without driving these attributes
into disruption. In figuring how much solar energy could
reasonably be integrated along with adequate control of levels
of voltage and limits of passive-active power, this margin
becomes interesting. The VSI for 33 buses across 116
scenarios is shown in figure 11. The spikes presented where
PQ buses are converted to PV buses show the changes in
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operational state of certain buses which are expected to using

solar generation on exceed active real power demand.

Training: R=0.99882

Validation: R=0.99894
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Fig. 9. Variation of regression with the 42 epochs of LM
algorithm with tan-linear activation.
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Fig. 11. VSI with different penetration levels of SPV.

Case-2: Penetration of EV charging station at

various busses

As seen in table 3, EV charging stations have been
integrated into buses with larger VSI in the second scenario.
The impact of increasing EV on voltage stability is illustrated
in figure 12, which indicates that the voltage in the selected
buses diminishes when there is an increase in load demand.
Figure 13 illustrates the VSI for 33 busses over 428 scenarios
of EV penetration levels. The VSI spike s represent break
points when the load demand reaches its maximum limit,
which might be critical for the system’s voltage stability due
to increased demand.
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Fig. 12. Variation in bus voltages - case:2.
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Fig. 13. VSI with different penetration levels of EV
charging.

Case-3: Combined penetration of SPV and EV
charging stations
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4.2.3.

Figure 14 demonstrates the voltage behavior of buses
under increasing EV and SPV penetration in Case 3 (Table 3).
EV-connected buses experience noticeable voltage dips due to
charging loads, whereas SPV-connected buses maintain
relatively higher voltage levels. The presence of SPV
generation helps offset voltage decline typically caused by EV
loads. Additionally, converting PQ buses to PV buses (with ¢
= 1) results in a sharp voltage rise, further enhancing voltage
stability.

Table 3 (entries 16-22) outlines scenarios of simultaneous
SPV and EV integration. When penetration levels increase
beyond typical operating margins, voltages and VSI values
begin to fluctuate, indicating system stress. As shown in
Figures 14 and 15, high SPV-EV integration begins to unlock
voltage thresholds at the substation level, challenging the
system’s stability boundaries.
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Fig. 15. VSI with SPV and EVs.

In entry 26 of Table 3, a scenario with low SPV (2 units)
and high EV (5 units) penetration is analyzed. Figure 16
reveals that this imbalance leads to the steepest voltage drops,
particularly at EV-dominant buses. In contrast, SPV buses are
less affected. Figure 17 confirms that high EV loading
significantly weakens the VSI profile across the network,
reinforcing the need for balanced integration of distributed
generation and EV demand to preserve system reliability.
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Fig. 16. Variation in bus voltages during high EV
penetration and low SPV penetration.

Figure 18 presents the voltage profile for Case 3, Entry 27
(Table 3), involving low EV penetration (2 buses) and high
SPV integration (5 buses). In the early stages, voltages rise
uniformly across all buses due to high solar power availability.
A further boost is observed when PQ buses are converted to
PV buses, reinforcing the positive effect of distributed solar
generation on system voltage support. Figure 19 shows the
corresponding Voltage Stability Index (VSI) across all 33

buses. During peak solar hours, the improved VSI indicates
enhanced voltage stability. However, the results also reveal
that excessive SPV injection—especially under light
loading—may result in overvoltage conditions, signaling a
need for coordinated control strategies. These findings
highlight that while SPV integration can alleviate voltage
drops, unregulated high penetration risks destabilizing the
system through voltage exceedance.
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Fig. 17. VSI of 33 buses with high EV penetration and
low SPV penetration.
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Fig. 19. VSI of 33 buses with high SPV penetration and
low EV penetration.

Case 3, Entry 28 (Table 3), illustrated in Figure 20,
evaluates system behavior under simultaneous high
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penetration of both SPV and EVs (7 buses each). Initially, EV
charging demand leads to noticeable voltage dips, but as SPV
generation increases, the network voltage recovers due to
renewable energy being absorbed by EV loads. However, once
SPV generation surpasses consumption, the network again
experiences voltage rise beyond nominal levels. Figure 21
reflects this in the VSI trends, showing that while combined
SPV-EV integration can stabilize the system under balanced
conditions, it can also introduce instability if unmanaged. This
complex interaction emphasizes the importance of optimized
coordination between renewable generation and flexible
demand (e.g., EV charging), supporting the study’s insight
that intelligent scheduling and real-time voltage regulation.
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penetration.

4.3. Predictor-Corrector Continuation Power Flow Results

A continuation power flow method has been used to
evaluate the voltage stability characteristics of different
distributed energy scenarios. The Predictor-Corrector
Continuation Power Flow study was conducted on the IEEE
33-bus radial distribution system in three scenarios: with SPV
integration, EV integration, and both SPV and EV integrated.
In each case, the ‘GAM’ and ‘LAM’ indicators graphs were
drawn.

The results from the Predictor-Corrector CPF for the case
of SPV-only integration are shown in figure 22. When the
generation factor ¢ is increased, voltages at the SPV buses
increase slowly at first. If the active power produced at a bus
is greater than the local demand (Ps > Pp), that particular bus
goes through PQ-PV conversion. This results in a shift of
voltage to 1.05 PU. The depicted plot highlights this transition

point. Due to the method’s path-following continuation
capability, there is efficient capture of the propulsion voltage
control mechanism which serves the purpose of strategically
routing generation within inert distribution networks.
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Figure 23 shows the CPF results for a scenario with
increasing EV loads at Buses 2, 3, 4, 20, 23, 26, and 30,
without any local generation. As the loading parameter (L)
increases, these buses experience continuous voltage decline,
with no sign of recovery. Remote buses, particularly Bus 30,
show early voltage collapse due to their position at the far end
of the radial feeder. While this behavior is consistent with
expectations in radial networks under high load conditions,
CPF effectively tracks the progression of instability,
identifying the most vulnerable nodes early in the loadability
curve.

With SPV
102

e Bus 7

BusB
Bus 16

] Bus 19

Bus24

Bus 32

s Bus 33

0 0.5 1 L5 2 25
€

Fig. 23. Variation in bus voltages with EV penetration.

Figure 24 extends this analysis by incorporating
simultaneous SPV generation at Buses 7, 8, 16, 19, 24, 32, and
33 alongside the same EV load increase. While the EV-loaded
buses still experience voltage reductions, the presence of
distributed generation results in improved voltage stability
margins and delays the onset of collapse. The key insight here
is not just the voltage improvement at SPV buses, but the
broader stabilizing effect across the network. This
demonstrates that the coordinated deployment of SPV
generation near or along stressed feeders can significantly
mitigate voltage stress from EV charging loads, offering a
practical strategy for enhancing resilience in future
distribution systems.
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Fig. 24. Variation in bus voltages with SPV and EV
penetration.

4.4. Jacobian-Based Sensitivity Analysis Results

In this section, it interpret the results of the Jacobian-
Based Sensitivity Analysis (JBSA) applied to the IEEE 33-bus
radial distribution system under three operational scenarios:
(i) Electric Vehicle (EV) load penetration, (ii) Solar
Photovoltaic (SPV) generation integration, and (iii)
simultaneous SPV and EV presence. Unlike CPF, which maps
the full loadability curve, JBSA offers direct insight into how
voltage magnitudes respond to incremental power changes

through sensitivity factors Z—Z and Z—Z, computed using the
inverse Jacobian at specific operating points. At the final
loadability point A = 190.6, corresponding to increased load at

Bus 2, the voltage sensitivity factors Z—Z and Z—Z were calculated

across all buses. As shown in Figure 25, a sharp peak in both
sensitivity metrics is observed near Bus 18. This identifies it
as a voltage-sensitive bus, even though the load increase
originated from Bus 2. In contrast, Buses 1-5, located close to
the substation, display minimal sensitivity. The radial
structure of the network inherently causes higher sensitivity in
mid and end-feeder buses, reinforcing JBSA’s effectiveness in
identifying weak nodes prone to voltage collapse.
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Fig. 25. Voltage sensitivity factors with respect to EV
penetration in bus 2.

Under a different condition where generation is
increased at Bus 7 up to € = 1.20, the sensitivity profile, shown
in Figure 26, still identifies Bus 18 as the most critical point.
This result highlights that spatial proximity to the generation

source does not guarantee local voltage stability improvement,
especially in radial systems. While SPV injection supports
voltage locally, its influence diminishes along the feeder,
emphasizing the need for strategic generator placement and
coordinated voltage control.

JBSA Voltage Sensitivity at € = 1.20 (Final Step)
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Fig. 26. Voltage sensitivity factors with respect to SPV
penetration in bus.

In the third case, simultaneous EV load and SPV
generation penetration were modeled with EVs added at Buses
2,3, 4,20, 23, 26, and 30, and SPVs at Buses 7, 8, 16, 19, 24,
32, and 33. The resulting sensitivity plot at A = 18.50 and € =
2.1 is depicted in Figure 27. Here, a more distributed
sensitivity pattern with multiple peaks is observed. This is
indicative of complex interactions between load stress and
generation support. Mid and end-feeder buses, once again,
show higher sensitivity, underscoring their vulnerability under
high EV penetration. Notably, the voltage support from SPV
generation appears insufficient to fully mitigate the
destabilizing effects of increased EV demand unless
coordinated planning is applied.
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Fig. 27. Voltage sensitivity factors with respect to

simultaneous SPV and EV penetration.
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4.5. Comparison of Voltage Stability Analysis Methods

The IEEE 33-bus radial distribution system is analyzed in
terms of memory and computational time against varying
stability assessment using three methodologies—Predictor-
Corrector Continuation Power Flow (CPF), Jacobian-Based
Sensitivity Analysis (JBSA), and Artificial Neural Network
(ANN) is illustrated in table 5. Although CPF was accurate
and traced the entire loadability path, it took the longest time

Table 5. Comparison of voltage stability analysis methods

of 20.34 minutes and moderate memory of 7.64 MB. JBSA
spent only 2.86 minutes due to significant computation time
savings, but used more memory (21.90 MB) because of the
necessity to retain the complete Jacobian matrix and the
approach, how- ever, completed the assessment in 0.6 seconds
while using the least amount of memory (3.0265 MB), which
increases the appeal of the method for real-time applications
and quick decision making.

Voltage Stability Analysis Methods

Memory Required (MB)

Total Time Required

CPF 7.64 20.34 minutes
JBSA 21.90 2.86 minutes
ANN 3.0265 0.6 seconds

5. Conclusion

In this paper, it developed a complete framework for
voltage stability analysis of radial distribution systems with
high penetrations of Electric Vehicles (EVs) and Solar
Photovoltaics (SPVs) using three approaches: Predictor-
Corrector Continuation Power Flow (CPF), Jacobian-Based
Sensitivity Analysis (JBSA), and a proposed Artificial Neural
Network (ANN) model. The developed ANN model was
trained on detailed datasets developed for different operational
scenarios such as simultaneous EV load increases and SPV
generation at fundamental buses of the IEEE 33-bus radial
distribution system.

The CPF method precisely traces the P-V curves, as well
as the loadability limits and point of voltage collapse. It
estimates crucial indicators like Loadability Margin (LAM)
and Generation Admissibility Margin (GAM) which supports
effective understanding of system stability. However, due to
the computational and time-intensive nature of the process,
CPF is not real-time suitable. JBSA, on the other hand,
analyzes the Jacobian matrix to provide a rapid assessment of
voltage sensitivity factors which is very useful in terms of
localizing weak buses. Although this method is faster than
CPF, its high memory consumption without real-time
responsiveness is still a disadvantage.

The limitations described earlier are solved with the
incorporation of VSI, LAM, and GAM as features and
indicators at the system level in the proposed ANN-based
method, which enables accurate and instantaneous stability
predictions. The predictive accuracy achieved by the model
using ANN is remarkable, considering it takes only 0.6
seconds and 3.0265 MB of memory, compared to the CPF’s
20.34 minutes and 7.64 MB, and JBSA’s 2.86 minutes and
21.90 MB, both significantly higher in taxpayer resources in
comparison to the ANN model. Moreover, the model’s
adaptability under changing operational conditions enhances
its reliability in real-time stability monitoring.

In conclusion, the combination of LAM, GAM, VSI, and
ANN boosts the voltage stability assessment associated with
modern distribution systems. The findings validate the

practicality of the proposed ANN model as it offers a
dependable solution that is easily scaled and computed against
the conventional techniques of CPF and JBSA, in particular
for application in smart grids with high decentralized energy
resources and electric vehicle integration due to the speed
sensitivity of the system. Incorporating real- time forecasting
of SPV generation and stochastic modeling of EV charging
behaviors will be elements to consider in further work, along
with optimization-based placement strategies for distributed
generation and storage units.
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