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Abstract- The growing penetration of electric vehicles (EVs) and solar photovoltaic (SPV) systems in radial distribution 

networks increases system flexibility, yet poses severe challenges to voltage stability. Conventional approaches like Continuation 

Power Flow (CPF) and Jacobian-based sensitivity analysis (JBSA) offer accurate evaluations, but tend to be overly slow because 

of resource consumption. This paper proposes a com- bination of a data-driven approach to automate the assessment of voltage 

stability with a neural network approach for faster evaluation using a set framework of benchmarking scenario parameters to test 

boundary conditions at different levels of EVs and SPV penetration focused around the core elements of thwarting the system 

behaviour changes. The methodology strongly focuses around three parameters—Voltage Stability Index (VSI), Loadability 

Margin (LAM), and Generation Admissibility Margin (GAM)—that outline the system’s ability to withstand further injections 

of load and generation while keeping the voltage within acceptable limits for stability analysis. The ANN model is developed 

with the load flow datasets obtained from the IEEE 33-bus radial distribution system as the training set. Out of all the learning 

algorithms used, the best accuracy was obtained with the Levenberg-Marquardt algorithm. This study is novel in its combined 

assessment of voltage stability under simultaneous high penetrations of SPV and EVs, which have traditionally been studied 

separately. The proposed Feed-forward ANN model uniquely estimates Voltage Stability Index (VSI), Loadability Margin 

(LAM), and Generation Admissibility Margin (GAM) concurrently, enabling adaptive, real-time monitoring. Unlike prior 

methods, our approach integrates data-driven machine learning with power system analysis for efficient, accurate prediction, 

providing practical insights for distribution network operators managing renewable and EV integration. Compared to 

conventional methods CPF (20.34 minutes, 7.64 MB) and JBSA (2.86 minutes, 21.90 MB), the ANN requires only 0.6 seconds 

and 3.03 MB, demonstrating significant gains in speed and memory efficiency. Results show the proposed ANN-VSI method 

effectively forecasts voltage stability margins, offering a practical alternative to traditional methods for real-time stability 

assessment in active distribution systems with high renewable energy and electric vehicle integration. 

Keywords Solar photovoltaic (SPV) penetration, electric vehicles (EVs), voltage stability, voltage stability index (VSI), 

loadability margin (LAM), generation admissibility margin (GAM). 

 

1. Introduction 

Every aspect and activity in a person’s life relies heavily 

on electricity. Therefore, an electrical power system can be 

viewed as having four main constituents: generation, trans- 

mission, distribution, and utilization [1, 2]. The latter is the 

most important because it addresses the increasing electricity 

demand that must be satisfied by the distribution network. 

Within these configurations, radial, mesh, loop, and network 

designs are used to sort out distribution of power to the 

customers effectively [3]. However, customer-oriented 

utilities tend to focus on radial distributions owing to its 
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operational simplicity. Due to the factors like urbanization, 

heavy industrialization, and rapid growth in population, 

worldwide demand for power has increased significantly in 

recent years. This creates additional challenges for power 

systems, including voltage instability, which can lead to 

blackouts [1]. There has been improvement and shift to 

sustainable energy resources to meet constant energy 

demands. In India, as of 31st July 2024, the PLI scheme with 

an estimated investment of 19,500 crores has resulted in an 

installed capacity of renewable energy of 150.276 GW and 

87.21 of it being solar photovoltaic sponsored under the 

Ministry of New and Renewable Energy. 

The increasing integration of SPV systems and EVs 

significantly influences voltage profiles in radial distribution 

networks. SPV generation can cause voltage rise during peak 

solar irradiance periods due to surplus active power injection, 

potentially pushing voltages beyond acceptable limits [4]. 

Conversely, EV charging loads can create sharp voltage drops 

during high demand periods, as the increased reactive and 

active power consumption stresses the network [5]. The 

simultaneous presence of both SPV and EVs results in 

complex voltage fluctuations, challenging conventional 

voltage regulation methods and risking voltage instability. 

While numerous studies have independently examined the 

effects of SPV or EV penetration on voltage stability, limited 

research has addressed their combined impacts 

comprehensively. Moreover, prior works often focus on 

traditional analysis methods, lacking adaptive or real-time 

assessment tools capable of managing dynamic voltage 

changes in highly variable systems. This research addresses 

these gaps by developing an Artificial Neural Network 

(ANN)-based approach for real-time voltage stability 

assessment that accounts for the simultaneous integration of 

SPV and EVs, improving decision-making for system 

operation and planning. 

This paper's novelty lies in the comprehensive 

consideration of both SPV and EV impacts on voltage stability 

within radial distribution systems, which is relatively 

unexplored. Unlike earlier studies focusing on individual 

effects or offline assessments, we develop a machine learning-

based framework—specifically, a Feed-forward Artificial 

Neural Network—that simultaneously estimates key stability 

parameters (VSI, LAM, GAM) in real time. This integrated 

approach enables improved voltage regulation and system 

planning under dynamic operating conditions, supporting 

higher penetration levels of renewable energy and EVs with 

enhanced reliability. 

1.1. Review of Relevant Literature 

The integration of Solar Photovoltaic (SPV) systems and 

Electric Vehicles (EVs) is likely to introduce higher levels of 

intermittency and uncertainty into both generation and load 

demand within the power grid. Many researchers have 

analyzed the impact of SPV systems and EV charging on the 

operations of the grid, but quite little work has been done on 

the combined effect of both on grid stability, energy 

economics, and power quality [6-8]. Also, most of the studies 

do not address the topic of voltage stability extensively in 

distribution networks with high SPV and EV penetrations. 

During times of high solar irradiance, SPV systems tend to 

increase voltage due to excess generation [9-11], whereas EV 

charging tends to reduce voltage during periods of high 

demand. The combination of these effects may lead to 

enormous and rapid changes in voltage that can overtax 

traditional voltage regulating devices and result in voltage 

instability or total system failure [12-13].  

Several methods are available for evaluating voltage 

stability, including P-V curves, Q-V curves, sensitivity 

analysis, modal analysis, continuation power flow, and 

voltage stability indices [14]. Among these, Voltage Stability 

Indices (VSI) have garnered increased attention for online 

voltage stability monitoring, as they provide a quantitative 

metric to assess proximity to voltage instability in real time. 

VSI offer a single numerical value that directly represents the 

system’s stability margin, making it easier to understand and 

apply compared to P-V and Q-V curves, which require 

graphical interpretation. Unlike sensitivity analysis, which 

only shows the indirect impact of system parameters on 

stability, VSI quantify the true stability margin, offering more 

actionable insights. 

Additionally, VSI are computationally efficient compared 

to continuation power flow analysis, as they avoid iterative 

calculations and resource-intensive simulations. This makes 

them particularly useful for rapid assessments and real-time 

monitoring [15]. VSI also aid in optimizing the placement of 

SPV systems and EV charging stations by providing crucial 

information on voltage stability margins, enabling well-

informed decisions that enhance system performance. 

Therefore, this study employs the VSI to identify strong and 

weak buses in the distribution network, facilitating the optimal 

placement of SPV and EVs [16]. 

Recent research has begun to explore the integrated 

effects of SPV and EVs on distribution networks using both 

conventional and intelligent techniques. A study in [17] 

proposed a coordinated control scheme with distributed PV to 

improve voltage stability and loadability in a modified IEEE-

9 bus system. Hybrid metaheuristic optimization was applied 

in [18] to minimize voltage deviation and unbalance in PV-fed 

EV charging stations using Fire Hawk and Whale PSO 

algorithms on the IEEE-123 bus system. Comprehensive 

reviews such as [19] have highlighted the growing adoption of 

machine learning and FACTS devices for real-time voltage 

stability enhancement in renewable-dominant networks. A 

novel chance-constrained PV hosting capacity framework 

under uncertainty using Gaussian Process and Logit learning 

was introduced in [20], showcasing improved voltage risk 

prediction on IEEE 33- and 123-bus systems. Additionally, 

community-level analysis in [21] revealed that EV charging 

strategies directly influence PV investments and voltage 

stability in low-voltage grids, further emphasizing the need for 

adaptive control methods in future planning. 

In addition to voltage stability, maintaining loadability 

and generation admissibility is critical for ensuring the 

reliability and stability of distribution systems with significant 

SPV and EV penetration. The loadability margin (LAM) 

ensures that the system can handle increased demand from EV 

charging without the risk of overload or significant voltage 

drops [22]. Meanwhile, the generation admissibility margin 
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(GAM) ensures the system can accommodate the variable 

output from SPV without causing voltage surges or 

overloading network components. Effective management of 

these margins allows the system to absorb fluctuations in both 

solar generation and EV charging patterns, maintaining stable 

voltage levels and preventing operational disruptions. 

Achieving this balance is essential for supporting the growth 

of renewable energy and electric transportation, while 

ensuring reliable distribution network operation. The 

estimation of the LAM and the GAM using a machine learning 

approach in a radial distribution system is one of the 

fundamental ideas introduced in this study for the reliable and 

stable operation of distribution systems with significant SPV 

and EV penetration. Accurate assessment of these margins is 

essential for regulating voltage stability under fluctuating load 

and generation conditions. 

The attempt made by machine learning techniques, 

especially artificial neural net-works (ANNs), to predict 

voltage stability under various system contingencies and 

normal steady-state conditions has not succeeded due to the 

heavy dependence of these attempts on the feature selection 

process. In a number of previous works, several ANNs have 

been designed and trained to compute line-based voltage 

stability indices and the results have been satisfactory. Goh et 

al. [23] showed the effectiveness of ANNs to predict many 

line voltage stability indices (like Lmn, FVSI , VCPI, LCPI, 

etc.) in IEEE 9 and 14-bus systems and shown that they could 

reliably predict critical lines that were likely to fail due to 

voltages collapsing. Sharma et al. [24] also analyzed the 

effectiveness of some models such as Feedforward 

Backpropagation, Layer Recurrent and RBFN in predicting 

FVSI under different levels of reactive loading and stated that 

RBFN was the best performer in terms of predicting accuracy. 

In this study, the ANN was trained using the dataset 

obtained from carrying out power flow studies of the 

Distribution system model in different scenarios [25]. Active 

power demand, reactive power demand, voltage angle, voltage 

magnitude, generated active power, loadability factor, and 

generation factor were among the input variables that formed 

the training data for the ANN. This comprehensive approach 

to voltage stability assessment, combined with machine 

learning techniques, aims to improve decision-making in 

voltage management and enhance the reliability of distribution 

systems with high penetrations of SPV and EVs. Also, this 

study used the IEEE 33-bus radial distribution system as a 

benchmark for comparison analysis with the proposed VSI 

based ANN model, utilizing Predictor-Corrector Continuous 

Power Flow [26-27] and Jacobian-Based Sensitivity Analysis 

(JBSA) [28] as the primary analytical methodologies. 

1.2. Predictor-Corrector Continuous Power Flow 

The Predictor-Corrector Continuation Power Flow (CPF) 

method is widely used for assessing voltage stability as well 

as performing loadability studies in power systems [29]. The 

method introduces a continuation parameter called λ which 

allows for systematic tracing of the power-voltage (P-V) curve 

in accordance with incremental loading or generation changes 

[22]. The CPF framework uses a two-phase procedure in 

which a predic- tor step first calculates the next solution point 

based on the current operating point using a tangent vector, 

followed by a corrector step which applies Newton-Raphson 

iterations to improve the predicted solution. This method 

improves reliability of convergence in areas near the critical 

point of voltage collapse, where traditional power flow 

techniques often have difficulties achieving convergence. The 

predictor step computes the next state (x̂j +1 , λ̂j + 1 )  based on 

the previous point (xj, λj), a normalized tangent vector z̄ j , and 

a predefined step size σj. The estimate is expressed as: 

     [
𝑥̂ 𝑗+1
𝜆̂ 𝑗+1

] =[
𝑥̂𝑗
𝜆̂𝑗
] + σj z̄j                                                                                 (1) 

Subsequently, the corrector step ensures that the solution 

satisfies both the power flow equations f (x, λ) = 0 and a 

parameterization constraint. This paper employs a pseudo arc-

length formulation to ensure numerical continuity across 

turning points defined by [24]: 

ϕj(x, λ) = [
𝑥̂ − 𝑥̂𝑗
λ −  λλ

]
𝑇

 z̄j − σj = 0                                     (2)       

However, a notable disadvantage of this method would be 

the heavy computational time, especially when it comes to 

larger systems demanding many continuation steps and 

corrections. 

1.3. Jacobian-Based Sensitivity Analysis (JBSA) 

The JBSA approach provides an analysis technique using 

the Jacobian matrix obtained from the power flow equations’ 

linearized set to study the impact of active and reactive power 

injections on the voltage level at the buses, assuming the bus 

voltage magnitudes operate within a specific value. This 

approach stems from the Newton Raphson method where the 

nonlinear power flow equations are solved using first-order 

Taylor series expansion about an operating point. Such 

approach defines the Jacobian matrix J, which is composed 

of partial derivatives of power injections with respect to 

voltage magnitudes and angles, as a basis for sensitivity 

calculation. Quantitative sensitivity computation comes of 

matrix inversion that expresses small perturbations on power 

as [28]:  

[
𝛥𝛿
𝛥𝑣

] = 𝐽−1 [
𝛥𝑃
𝛥𝑄

] 

where ∆P and ∆Q are incremental changes in real and 

reactive power, and ∆δ and ∆V are the corresponding 

variations in voltage angle and magnitude. Although JBSA 

provides an organized structure based on mathematics for 

performing voltage sensitivity analysis, it has considerable 

constraints concerning its usage in radial medium voltage 

distribution systems, and it also uses much more storage on 

computer memory. 

1.4. Contribution and Paper Organization 

Compared to the existing literature, this paper offers the 

following 

➢ It analyzes the scope of the impact concerning the 

individual and synergistic effects the SPV and EVs 

have on voltage stabilization in a distribution system. 
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➢ It determines strong and weak buses in the 

distribution network with the help of VSI, thus 

facilitating appropriate location of SPV system and 

EV charging stations. 

➢ It defines the limits within which the dual parameters 

LAM and GAM for selected buses are maintained to 

ensure system resiliency and reliable operation for 

different load and generation profiles. 

➢ It constructs, trains, and validates a Feed-forward 

ANN model for VSI, LAM, and GAM estimation at 

the selected buses using various algorithms, thereby 

enabling real-time adaptive voltage stability 

monitoring and responsive intervention. 

➢ It analyzes JBSA and the conventional method of 

Predictor-Corrector Continuous Power Flow against 

the proposed VSI-based ANN method, thus 

enhancing under- standing of the former’s efficacy. 

The rest of this paper is structured as follows: In Section 

2, the fundamentals of volt- age stability are discussed, which 

includes the definitions and formulations of Voltage Stability 

Index (VSI) as well as LAM and GAM. In Section 3, I 

provide detailed explanation of the proposed ANN-based 

estimation technique of VSI, LAM, and GAM. The Section 4 

offers commentary on the results obtained from the 

simulations and discusses them further. In the concluding 

section, provide definitive remarks while clarifying the 

principal findings of this study in Section 5. 

2. Fundamentals and Definitions 

The importance of maintaining an adequate voltage level 

in radial distribution systems is of core interest in dependable 

power delivery, more so in systems with a pronounced blend 

of renewable energy technologies and electric vehicles. 

Moreover, due to the simple and single-path nature of radial 

systems, which is easily subjected to changes in load and 

distributed generation, radial systems are more susceptible to 

voltage deviation. This part seeks to explain the most voltage 

stability aspects of radial networks along with the 

fundamental and important definitions in regard to voltage 

stability in such networks. 

2.1. Voltage Stability 

“Voltage stability” describes a power system’s efficacy in 

maintaining the voltages at each bus within reasonable 

bounds nearby the nominal value, and also requires that no 

singularities arise from flexible disturbances [30]. It is 

fundamentally connected with how well the system can 

balance the supply and demand of the electric load.  

Table 1. Comparison of VSI based on analytical approach 

Voltage instability is often observed as slow decay or 

increment of the voltage level at some particular bus. The 

addition of SPV systems and EVs to distribution networks 

brings new challenges that can worsen voltage instability. 

Fluctuating solar power generation and the nonexecutable 

nature of load forecasting such as EV charging impose 

tremendous voltage deviation. The overvoltage phenomenon 

that may occur during peak solar irradiance periods is due to 

excess power produced when the local distribution network 

is poorly designed or equipped to control these fluctuations 

[31]. At the same time, these systems can be further 

exacerbated by additional EV demand during charging 

periods which stresses the infrastructure, resulting in further 

voltage depression or oscillation and system destabilization. 

2.2. Voltage Stability Index (VSI) 

The VSI metric is a quantitative measure used to gauge 

the voltage stability of power distribution networks. It 

enables the online operation of the system, indicating the 

stability margins and maximum loadability of the system’s 

various elements. VSIs serve to determine possible weak 

areas, like transmission or distribution lines or buses, that 

need detailed compensation or reinforcement by evaluating 

these factors. VSIs can be assessed on different levels from 

single distribution lines, buses, or for the entire network, 

allowing for comprehensive evaluation of the stability 

analysis. 

Using IEEE 14 bus model system of South Yorkshire, 

VSIs are calculated to pinpoint weak and strong voltage 

stability nodes in distribution system. This is highly useful in 

the case where DERs such as SPV systems are to be 

integrated optimally and when planning for grid EV charging 

stations. Through the distribution grid level set lower bounds 

for adjustable set points at weak buses to enhance voltage 

stability, reduce voltage collapse risk, and energy distribution 

efficiency in the grid. 

According to [14, 32], VSIs can be taught modulating like 

wigs in different photographs because of their methodologies 

and context of usage. 

➢ VSI based on Jacobian matrix’s operations 

➢ VSI based on the system variables 

➢ VSI Global, Bus, Line and individual VSI 

 

 

 

 

 

Jacobian matrix-based VSI System variables-based VSI 

Suitable for offline applications Suitable for online applications 

Determine the voltage stability margin Identify the weak busses or lines 

Require more computational time Require less computational time 
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Table 1 analyzes the classification and merits of different 

types of VSI. Although these methods are accurate, they are 

highly complex calculations and very sensitive to changes in 

topology, as changes to the network cause its formulae to 

recalculate its Jacobian matrix. This makes weakly monitoring 

voltages in real-time via a Jacobian – S-map order 

discrimination matrix approach impractical [33]. Also, with 

these methods, their longer calculation time increases the level 

problem of integrating distributed generation (DG). 

However, system variables based models are better focused to 

real time purposes, since they have lower computation 

workload. These types of models fall short though because 

they overestimate the severity of voltage instability and thus 

fail to provide useful boundary information completeness of 

VSM assessment [34]. 

Table 2 presents the classification of VSI into three types 

along with their advantages and disadvantages: line-based, 

bus-based, and global indices. Each type of VSI has merits and 

demerits. The former analyzes the stability aspect of voltage 

through transmission lines, measuring the ability of each line 

to maintain voltage level under load growth. These indices 

enable grid operators to disable further load increases before 

critical in- stabilities occur on certain voltage levels. Bus-

based VSI measures the voltage stability of particular nodes 

or buses in the network and the level of each bus to collapse 

voltage [35]. Some important indices are VCPI [36] and L-

index [37], which analyses voltage instability from point of 

view of a bus at certain load and give information about those 

busses which are near minimum under voltage region with 

some sanity for grid system. Finally, global indices offer 

holistic assessment of voltage stability from the point of view 

of entire power system.  

Table 2. Comparison of VSI based on specific focus area 

These indices utilize number of system-wide parameters 

which include evaluation of flow of load in the network, to 

assess the overall stability of the system and the vulnerabilities 

on which inference can be drawn at higher level. 

In order to facilitate the implementation of SPV and EVs, this 

research paper employs a bus VSI to identify weak and strong 

buses in the radial distribution system [16, 38, 39, 40]. Figure 

1 illustrates a simplified two-bus equivalent distribution 

network that helps how VSI for a specific bus j, i.e. VSIj is 

determined using Equation (3) given below [16]. 

VSI j = V4
i − 4(PjRi j + QjXi j)Vi

2 − 4(Pj Xi j − QjRi j)2                 (3)  

 

 

Fig. 1. Simplified distribution network. 

          Where, i and j are the sending and receiving buses; Pj and 

Qj are total effective active and reactive power at the receiving 

bus; and Rij and Xij are the line resistance and reactance 

between the buses i and j respectively. In a distribution system, 

the Voltage Stability Index (VSI) varies between 0 and 1. 

The system’s ability to effectively maintain voltage levels 

under varying load conditions is indicated by a value of 1, 

whereas a value of 0 indicates a high susceptibility to voltage 

collapse and very low voltage stability.            

 

  

Type Merits Demerits 

Line VSI (i) Simple and easy to implement (ii) Identifying 

sensitive lines (iii) Appropriate techniques for 

determining the network’s stability (iv) Reduced 

computation time 

(i) Lower accuracy (ii) Energy 

flow constraints limit the ability of most indices to 

predict system behavior beyond the collapse point 

Bus VSI (i) Useful for real-time ap- 

plications (ii) Identifying sensitive buses (iii) Simple 

and easy to implement 

(i) Implementation of these indexes are more 

challenging 

Global 

VSI 

(i) Better accuracy (ii) Better 

tool for predicting power system instability and 

transmission capability 

(i) Has limitations when used 

to radial systems (ii) Complexity in calculation 

2.3. Formulation of Loadability Margin (LAM) 

The LAM monitors the maximum additional load which 

the distribution network can stand without collapsing, 

particularly with respect to rising EV charging demands. The 

coming of EVs into the market brings about abrupt changes in 

grid demand, which if not properly controlled, can result in 

systems being overloaded, voltage drops, and or even system 

instability. To ensure these effects, to guarantee proper 

operation within the system while minimizing disruption, it is 

needed to preserve an adequate level of adaption management 

typically illustrated by a P-V curve. 

For calculating LAM, this study computes in intervals the 

active and reactive power demand of specific buses in the 

distribution system. More specifically, the buses with the 

maximum VSI values are analyzed and determined to be the 

most durable. Strong buses with high initial VSI values 

comprise Buses 2, 3, 4, 20, 23, 26, 30, and they serve as the 

basis for EV load placement. As for EVs, they are represented 

as basic dynamic loads at the bus level which further increases 

the demand for active and reactive power in Grid- to-Vehicle 

(G2V) mode with a loading factor λ. As per equations (4) - 

(6), they will be gradually adjusted according to a predefined 

strategy [41].  
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This modeling reflects typical real-world usage, where 

the majority of EVs draw power from the grid without 

supplying it back. While vehicle-to-grid (V2G) operation 

enables EVs to act as distributed energy resources by injecting 

power into the grid during peak demand or voltage instability, 

V2G functionality is intentionally excluded from this work as 

the study simultaneously incorporates significant penetration 

of solar photovoltaic (SPV) generation, which introduces 

variability in voltage profiles and acts as a form of distributed 

generation. By limiting EVs to G2V mode, the study isolates 

the effects of EV charging demand on the distribution 

system’s voltage stability and availability margins under 

fluctuating SPV conditions. This provides clearer insights into 

the challenges posed by increasing EV adoption when 

combined with intermittent renewable generation. 

Pdj,new = Pdj,old(1 + λ)                                                    (4) 

Qdj,new = Qdj,old(1 + λ)                                                    (5) 

λ = λold + δd                                                                  (6) 

In the previous iteration for bus j, real and reactive power 

demand are denoted as Pdj,old and Qdj,old, respectively. Also, for 

bus j, new adjusted values of increased loading factor λ are 

noted as Pdj,new and Qdj,new with δd rate. Hence, the divergence 

of load flow is defined to capture the maximum loadability 

threshold. This process is repeated until the system arrives at 

its voltage stability point, thereby defining the upper LAM 

limit. The algorithm to compute the upper limit LAM for the 

chosen buses is displayed in Figure 2. 

Figure 2 shows the LAM and GAM Margin estimation 

work flow employing the IEEE 33-bus radial distribution 

system. Initially, a base case study of load flow checking is 

carried out to determine voltage (Vi) at the bust’s, power’s 

elements (Pj, Qj) and also line parameters (Rij, Xij). As a result, 

The VSI (VSIj) is computed for each bus. Then it branches 

into two portions, the weaker one corresponding to the bus 

with minimum VSIj for generation increment (Pgj) estimate 

GAM, and to the strongest one corresponding to the bus with 

maximum VSIj for load increment (Pdj, Qdj) and estimate 

LAM. This step is practically executed by successively 

adjusting the generation or load, performing load flow 

analysis in each step while updating the VSI until Voltage or 

Vice state indicator constraints are breached. Under those 

conditions, the final outputs for λ and ϵ values are retrieved as 

maximum LAM and minimum GAM values correspondingly. 

The method provides voltage stability limits of the tested 

buses when subjected to increasing loading or generation 

increments. 

In the described approach, VSIjmin and VSIjmax denote the 

minimum and maximum bounds of the VSI (Voltage Stability 

Index) value measures across all buses in the base case load 

flow which is the basic range for controlling generation and 

load stepping loops to maintain stability with designated 

values 0 < VSIj < 1 and 0.95 ≤ Vi ≤ 1.05. 

2.4. Formulation of Generation Admissibility Margin 

(GAM) 

It is crucial to estimate the GAM to manage the variability 

of SPV generation. The supply demand equilibrium is affected 

by the intermittent power generation caused by SPV systems. 

The GAM marks the boundary of generation increase which 

does not destabilize the system. The distribution system can 

maintain stability and cope with the oscillations created by the 

penetration of solar power if this margin is preserved. The real 

power at the selected buses with lower VSI values in the 

distribution system is gradually increased by a generator factor 

ϵ defined in Equations (8)-(9) for the purposes of calculating 

GAM. Buses such as 7, 8, 16, 19, 24, 32, and 33 with low VSI 

values are identified for optimal selection for SPV integration, 

considering them as simple generators to evaluate power 

system voltage stability for stressed case scenarios assuming 

the bus is a PQ type and converted to PV type once PG > PD 

while power at the bus is determined using the equation,  

Pnet = Pdj,gen − Pgj,new                                                    (7) 

Pgj,new = Pgj,old(1 + ϵ)                                                    (8) 

ϵ = ϵold + δg                                                                  (9) 

Here Pgj,old means the real power that was injected earlier, 

and Pgj,new are the new updated power values after a generation 

change ϵ is applied at rate δg. The algorithms for estimating 

the maximum GAM for the selected buses is also explained in 

Figure 2. 

 

Fig. 2. Flowchart for estimation of maximum loadability 

margin (LAM) and generation admissibility margin (GAM). 

3. Methodology of the Proposed Artificial Neural 

Network Based Estimation of VSI, LAM and GAM 

The VSI in this context refers to system’s ability to 

maintain the definition of stable system voltage under 

fluctuations from renewables or EV loads. LAM is how much 

more extra load is added to the system to make it unstable, and 

generation margin is the system capability to service load 

compared to available generating resources. With the help of 

estimating VSI at a bus, combining with LAM and GAM 

using ANN, it is possible to integrate the SPV and EVs 

reliably to the radial distribution system. ANNs plays 

significant roles in estimating and maintaining voltage 

stability. 
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Prior works, including in [22], suggested the application 

of various machine learning techniques like artificial neural 

networks (ANNs) and support vector machines (SVMs) for 

forecasting LAMs or voltage stability. This work employed a 

machine learning approach with a Feed Forward ANN model 

to predict VSI and availability margins in distribution systems 

with high SPV and EV penetration. Figure 3 illustrates the 

ANN-based method diagram for evaluating stability in a radial 

distribution system 3. 

 

Fig. 3. Proposed ANN-based system for stability 

assessment. 

3.1. IEEE 33 Bus Test System 

The IEEE 33-bus radial distribution system is used as a 

test bed in this study to enable the examination of voltage 

stability assessment, as illustrated in figure 4. An example of 

a medium-voltage distribution network is the IEEE 33-bus 

system, which consists of 33 buses and 32 branches and 

operates at a nominal voltage of 12.66 kV [42]. This test 

system is well known for assessing how distributed energy 

supplies affect stability margins and voltage profiles [43]. As 

shown in figure 4, the particular buses assigned to SPV 

integration and EV charging station penetration are identified. 

The dynamism and complexity of the system are increased 

when EVs and SPV systems are integrated. Significant SPV 

integration influences voltage profiles and power flow 

because to its variability, whereas EVs provide extra load, 

potentially resulting in under voltage circumstances. The 

integration of SPV and EV proliferation in the system 

intensifies voltage stability issues. 

Solar Photovoltaic (SPV) systems are considered as 

distributed generators (DGs) placed at respective buses and 

are treated as conventional generation sources; in case their 

active power flows (output) is more than the local demand (PG 

> PD), the corresponding bus will switch from PQ to PV mode 

to enable voltage control operation. In this configuration, 

electric vehicles (EVs) are modeled as dynamic secondary 

loads that increase both active power and reactive power at 

particular buses in Grid-to-Vehicle (G2V) mode. This 

provides the fluctuation potential of renewable generation 

together with the variability of load due to EVs. This paper’s 

load modeling takes into consideration both the base loads of 

the IEEE 33-bus network as well as the additional ones 

resulting from EV integration at certain buses. In selected 

buses, EV loads are added incrementally while the original 

residential and commercial loads at all other buses are kept. 

This guarantees that the existing network demand along with 

the new EV loads is accurately captured, providing analysis 

into the depth of voltage stability and system interactions. 

 

Fig. 4.Schematic of IEEE 33 bus radial distribution system 

with EV and SPV penetration. 

To obtain the necessary initial datasets for ANN training, 

load flow solutions of the IEEE 33-bus radial distribution 

system with varying penetration levels of SPV and EVs are 

considered. Data required for the calculation of VSI are 

obtained through load flow analysis of the distribution system 

using the MATPOWER. After determining the VSI for the 

base case, buses with low VSI values are identified for SPV 

installation, while buses with higher VSI values are designated 

for EV charging infrastructure. 

3.2. Architecture and Training of the ANN 

ANN can learn complex non-linear input-output 

relationships through training without the need for explicit 

programming. Due to this learning ability, they perform 

effectively even in untrained scenarios. This study utilizes 

ANN’s capability to estimate the VSI and availability margins 

in distribution systems under high SPV and EV penetration.  

The efficiency of a neural network is critically dependent 

on the selection of input variables. The input variables selected 

for this research include active power demand (Pdi), reactive 

power demand (Qdi), bus voltage magnitude (Vi), voltage 

angle (Θi), real power injected (Pgi) by SPV, loadability factor 

(λ), and generation admissibility factor (ϵ). In this work, the 

choice of input variables is based on their impact on voltage 

stability as well as alignment with the Jacobian-Based 

Sensitivity Analysis (JBSA) benchmark. A JBSA’s primary 

function is to assess the measure of sensitivity of a system’s 

voltage to a set of controllable parameters designated as: as 

(Pdi), (Qdi), and (Pgi). Likewise, state variables Vi and Θi 

represent power flow analysis and form a basic kernel needed 

to describe the system behavior over a range of operating 

conditions. Moreover, λ and ϵ serve as high level voltage 

instability indicators. This unique blend guarantees that the 

ANN captures stability margins at nodal level and system 

level, making possible the use of more common analytic 

approaches. Taking into account the selected input variables 

from the 33 buses, the input pattern for the neural network 

consists of 7 arrays of 33 variables, each as input. VSI, LAM, 

and GAM are selected as output variables for the ANN to 

evaluate voltage stability in a radial distribution system with 

high penetration of SPV and EV, so the output pattern for the 

neural network consists of three arrays of 33 variables each as 

output. The model can efficiently assess and track voltage 

stability by training the ANN to anticipate these output 

variables. This enables proactive management and 

optimization of the distribution network in various scenarios 

of integrated energy and electric vehicle charging stations. 
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Artificial neural networks (ANNs) predict these output 

variables. Thus, the model efficiently analyzes and regulates 

voltage stability. This simplifies proactive monitoring and 

updating of distribution networks in scenarios with the 

integration of electric vehicle charging stations and distributed 

energy. Electric vehicles and distributed energy are integrated 

in these situations. Thus, a distribution system with 33 buses 

will have three arrays with 33 variables each as its output 

pattern. 

An artificial neural network with a single hidden layer 

made up of ten neurons was determined to be the best 

architecture for the suggested system after iterative testing. 

The ANN architecture is shown in Figure 5. The ability of a 

feed-forward artificial neural network to incorporate 

nonlinearity and recognize complex patterns is evaluated 

using nine different activation function combinations. 

Because they can efficiently link input to output without the 

complications that come with recurrent architectures, feed-

forward artificial neural networks are preferred. For 

comparative analysis, four training algorithms are also used: 

Resilient Propagation, Scaled Conjugate Gradient, Gradient 

Descent with Momentum, and Levenberg-Marquardt. 

 

Fig. 5. Architecture of ANN. 

3.3.  Identification of Possible Scenarios and Generation of 

Data Set for Training and Validation of ANN 

The identification of potential scenarios and generation 

data sets for voltage stability assessment and prediction of 

availability margins in the IEEE 33 radial test distribution 

system requires investigation of various penetration levels of 

SPV and EV. Scenarios for SPV penetration need to take into 

account how the variable nature of solar generation affects 

voltage stability and the system’s capacity to accommodate 

additional generation demand, i.e., GAM. When it comes to 

EV penetration, the emphasis switches to how more charging 

loads impact LAM, along with any possible voltage drop 

issues during peak charging periods.  

When both SPV and electric vehicles are present, 

scenarios must account for the dual effects of increased 

demand from electric vehicles and variable output of the SPV. 

This combined analysis helps predict the voltage stability of 

the system under varying demand patterns and fluctuating 

generation conditions. It also helps to evaluate the GAM by 

figuring out how much additional generation can be added to 

the system while maintaining voltage stability, as well as 

LAM by determining the maximum load the system can 

handle before voltage problems occur. 

Conventional power flow analysis is employed to 

generate datasets across various EV and SPV penetration 

scenarios. The first step is the calculation of the VSI for the 

base case scenario in the IEEE 33-bus radial distribution 

system to identify buses with lower VSI values. The identified 

buses are subsequently supplemented with SPV generation, 

which is gradually increased until the bus voltage magnitude 

(Vi) remains within the safe range of 0.9 to 1.05 per unit and 

the VSI is maintained between 0 and 1 to ensure stable 

operation. When the generation surpasses the load demand at 

a specific bus, the bus is converted into a PV bus, which 

signifies its new function in promoting voltage stability and 

improving the overall reliability of the system. In this research 

work a total of 116 scenarios are generated for various levels 

of SPV penetration case. The SPV generation at the specific 

buses was incremented by 10% units of the local load until the 

generation surpassed the demand (PG > PD), as well as voltage 

magnitudes and VSI (0.90 p.u ≤ Vi ≤ 1.05 p.u, 0 < VSI < 1) 

reached their limits.  

The second case of the analysis, EV charging is treated as 

an extra load in the IEEE 33 distribution system. This load is 

applied to the buses with higher VSI values in the base case 

scenario. The load is increased until the bus voltage magnitude 

(Θi) and VSI remains within the specified limits to maintain 

voltage stability. The impact of this load increase is 

penetration extensively investigated by generating a total of  

428 scenarios, which enables a detailed evaluation of the 

impact of varying levels of EV charging on system 

performance and stability under these constraints. In the same 

manner, EV loads were added at the selected buses in 10% 

steps of the base load until the VSI becomes 0, indicating the 

stability boundary, and bus voltages remained within 

acceptable limits. 

In the third case, both SPV and EV charging stations are 

considered simultaneously. In order to conduct a 

comprehensive analysis of the effects, 658 different scenarios 

were created. SPV systems and EVs are integrated 

simultaneously at identified buses into the IEEE 33 radial 

distribution system to examine the combined impacts on 

voltage stability. To evaluate the effect on the voltage profile 

of the system, this scenario included gradually increasing the 

penetration levels of SPVs and EVs. The analysis was 

specifically designed to ensure that the VSI and voltage 

magnitudes (Vi) remained within predetermined limits as the 

penetration levels of SPV and EV were increased. This was 

done in order to assess the impact of integrating EVs and SPVs 

at the same time on voltage stability and to determine the 

maximum penetration levels that the system is capable of 

handling without affecting stability. 

Table 3 gives the detailed summary of scenarios generated for 

the three different cases. The dataset is divided into 70% for 

training, 15% for validation, and 15% for testing in each of the 

categories, with 841 training samples, 180 validation samples, 

and 181 testing samples from a total data set of 1202. 
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Table 3. Various possible scenarios of SPV and EV  

Sl. No Load Bus Generation Bus No. of Scenarios 

Base Case 

1   1 

With SPV Penetration 

2  7 12 

3  8 12 

4  16 22 

5  19 22 

6  24 13 

7  32 13 

8  33 22 

With EV Charging Station 

9 2  38 

10 3  61 

11 4  33 

12 20  47 

13 23  130 

14 26  104 

16 30  14 

With SPV and EV Charging Station 

16 2 7 39 

17 3 8 63 

18 4 16 39 

19 20 19 57 

20 23 24 109 

21 26 32 121 

22 30 33 11 

23 3, 20 24, 32 46 

24 2, 3, 4, 16, 24, 33 39 

25 2, 4, 20, 26, 8, 16, 32, 33 39 

26 4, 20, 23, 26, 30 7, 8 22 

27 3, 4 16, 19, 24, 32, 33 45 

28 2, 3, 4, 20, 

23, 26, 30 

7, 8, 16, 19 

24, 32, 33 

28 

Total 1202 

 

3.4. Computational Efficiency and Model Complexity 

The computational efficiency of the ANN-based voltage 

stability estimator depends on both the ANN architecture and 

the complexity of the distribution network model used for 

training and inference. 

From the ANN model perspective, the current feed-

forward network size was selected to strike a balance between 

predictive accuracy and resource usage. While reducing the 

number of neurons or layers can decrease prediction time and 

memory footprint, preliminary experiments showed that 

smaller networks compromised the accuracy of Voltage 

Stability Index (VSI), Loadability Margin (LAM), and 

Generation Admissibility Margin (GAM) predictions. Thus, 

the current ANN architecture provides reliable results within 

a reasonable computation time and memory usage. 

From the distribution network perspective, reducing the 

network size (e.g., simplified models with fewer buses or 

aggregated loads) would reduce the dimensionality of ANN 

inputs, leading to smaller networks and faster computation. 
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However, such simplification may limit the model’s 

applicability and accuracy in representing voltage stability 

issues at a detailed level, especially in radial distribution 

systems with high penetration of solar photovoltaic (SPV) and 

electric vehicles (EVs) on each and every busses. Maintaining 

a sufficiently detailed network model is essential to capture 

spatial variability in voltage profiles and stability margins 

accurately. 

It is important to note that the present study employs an 

offline, background evaluation approach, wherein the ANN is 

trained and validated using extensive simulated datasets 

generated from power flow analyses under various system 

conditions. This offline training framework allows for the use 

of more complex models without the computational 

constraints inherent in real-time processing. Once trained, the 

ANN model can be deployed for near real-time voltage 

stability monitoring and decision-making of the system with 

considerable change in system conditions, where the achieved 

prediction latency of fraction of second is acceptable for 

operational use. The system used to run the ANN-based model 

features an 11th Gen Intel Core i7-11370H processor with a 

base clock speed of 3.30 GHz and 16 GB of RAM, which 

provides sufficient computational power and memory 

bandwidth for fast execution of lightweight neural networks. 

Its strong single-core performance facilitates rapid inference 

even without dedicated hardware accelerators, which justifies 

the model’s quick prediction time and minimal memory 

consumption. 

3.5. Generalizability and Applicability to Real-World 

Distribution Networks 

Though the proposed ANN model is developed and 

validated on the IEEE 33-bus radial distribution system, it 

ensures generalizability towards any real-world distribution 

network through multiple design considerations as follows: 

➢ It is trained on a wide range of operating conditions 

(varying load, SPV, and EV penetration) to capture 

general voltage stability behaviours beyond a single 

network. 

➢ Input features—active/reactive power, voltages, 

loadability, and generation factors—are 

fundamental electrical parameters common across 

most radial distribution networks. 

➢ The ANN architecture is adaptable and can be fine-

tuned and retrained with any real-time distribution 

system data to accommodate different network sizes 

and topologies. 

➢ The ANN framework supports retraining with 

suitable input output vectors with realistic data of 

any target practical distribution network, enabling 

the model to incorporate system-specific 

characteristics. 

Hence, this comprehensive approach ensures that the 

proposed ANN model maintains accuracy and reliability 

when applied beyond the benchmark IEEE 33-bus system, 

validating the model on larger, real-world distribution 

systems to confirm scalability and robustness. 

4. Simulation Results and Discussion 

The proposed methodology is simulated in IEEE 33-bus 

radial distribution system as a test bed using MATLAB. The 

ANN, as described in Section 3.2, is employed to estimate the 

VSI, LAM, and GAM for the selected test system. The dataset 

generated, as described in Section 3.3, is used for training, 

testing, and validating the proposed voltage stability 

assessment. 

4.1. Performance of the Trained ANN 

Every input pattern for the ANN consists of 231 inputs 

from the IEEE 33 distribution system and, as outlined in 

Section 3.2, the output pattern contains 99 outputs. After a 

number of cycles in testing, the chosen architecture in their 

ANN, which used the tan- linear activation function with the 

Levenberg-Marquardt training algorithm, demonstrated 

optimum results. This architecture had 10 neurons in the 

hidden layer, as shown in Figure 6, which is discussed below. 

 

Fig. 6. ANN architecture for IEEE 33 bus distribution 

system. 

4.1.1. Validation of the ANN-based voltage stability 

assessment 

The regression coefficient R is main metric for assessing 

the relationship of a goal with input values in a given 

predictive model. A correlation result of 0% means there is no 

relation at all which implies that results are totally random 

relative to the targets while a value of 100% defines perfect 

correlation meaning that results are greatly correlated to the 

objectives. This metric shows how well the predicted results 

match the actual values of the goal. 7 demonstrates a bar graph 

depicting all the R values obtained from the four distinct 

strategies of training functions with the corresponding 

evaluation done across a total of nine combinations of 

activation functions. This form of presentation makes it easy 

to gauge how well each algorithm performs in comparison to 

the set tar- gets that were provided. In order of preference, 

various training functions were tested for the ANN model to 

establish the best training algorithm for the system under 

study. This strategy guarantees the best result in both accuracy 

and generalization, and function se- lection was carried out 

through comparative evaluation. In the evaluation of all R 

values, the Levenberg-Marquardt (LM) approach is repeatedly 

claimed to outdo all competitors in every evaluation. This 

means that he offers the best and most reliable estimates when 

made in comparison to all other alternatives available. 
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Fig. 7. Comparison of R value for different training 

algorithms. 

Figure 8 illustrates how the mean squared error (MSE) is 

computed over several training epochs. In table 4, the best 

prediction accuracy for various training algorithm and 

activation function combinations is presented. This shows has 

shown delved into how varying training techniques and 

activation function settings impact the predictions. The 

average lowers the MSE, the more effective the model is 

considered. Performance analysis demonstrates that the Tan-

Lin activation function maintains accuracy and reliability 

throughout a range of operational training strategies.  

 

Fig. 8. Variation in mean-squared error of LM algorithm 

with tan-linear activation. 

Table 4. Comparison of regression values (R) for different activation function 

Activation 

functions 

Levenberg- 

Marquardt 

Gradient Descent 

with Momentum 

Resilient 

Propagation 

Scaled Conjugate 

Gradient 

Tan-Log 0.42803 0.34527 0.42132 0.42763 

Tan-Lin 0.99649 0.87492 0.98687 0.98964 

Log-Tan 0.99613 0.25272 0.97302 0.98777 

Log-Lin 0.98973 0.65136 0.96381 0.9939 

Lin-Tan 0.99537 0.65291 0.47957 0.43728 

Lin-Log 0.42209 0.35641 0.42806 0.40133 

Log-Log 0.43175 0.35718 0.45674 0.39465 

Lin-Lin 0.99636 0.021886 0.98623 0.99373 

Tan-Tan 0.99578 0.81205 0.98281 0.98898 

 

The model improves most between the 60th to 70th epoch, 

showing nearly 0.0022782 MSE at epoch 65, proving 

strongest error reduction. R values during advance the 

summarized obtained during training, validation, testing 

phases of LM with tan linear activates is demonstrated in 

figure 9. This figure summarizes the R values obtained during 

the training, validation, and testing phases of the LM 

technique with a tan-linear activation function. The results 

confirm that the LM algorithm is consistent and dependable in 

its performance, particularly in conjunction with the tan-linear 

activation function. The illustration proves the reliability and 

efficiency of the LM algorithm, showcasing its robust 

performance. 

4.2. Analysis of the Results and Discussion 

 

4.2.1. Case-1: SPV penetration at selected busses 

SPV systems incur smaller values of VSI on Distribution 

buses, thus they are integrated into system buses. In order to 

illustrate the changes in bus voltages for the various scenarios 

associated with SPV integration, which include results from 

Scenarios 2 to 8 as stated in table 3, which is illustrated in 

figure 10. For a given scenario at a time, all buses voltage 

magnitudes were captured. The graph indicates that there is an 

extent to which generation exceeds load demand, which 

causes the PQ bus to convert to a PV bus, voltage boostering 

at 1.05 pu and voltage steadiness at the same time and further 

improving a dependable system with enhanced modular solar 

power. The generating margin is the region within which 

additional capacity could be supplied below the limits stated 

and increase the possibilities without driving these attributes 

into disruption. In figuring how much solar energy could 

reasonably be integrated along with adequate control of levels 

of voltage and limits of passive-active power, this margin 

becomes interesting. The VSI for 33 buses across 116 

scenarios is shown in figure 11. The spikes presented where 

PQ buses are converted to PV buses show the changes in 
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operational state of certain buses which are expected to using 

solar generation on exceed active real power demand. 

 

Fig. 9. Variation of regression with the 42 epochs of LM 

algorithm with tan-linear activation. 

 

Fig. 10. Variation in bus voltages - case:1. 

 

Fig. 11. VSI with different penetration levels of SPV. 

4.2.2. Case-2: Penetration of EV charging station at 

various busses 

As seen in table 3, EV charging stations have been 

integrated into buses with larger VSI in the second scenario. 

The impact of increasing EV on voltage stability is illustrated 

in figure 12, which indicates that the voltage in the selected 

buses diminishes when there is an increase in load demand. 

Figure 13 illustrates the VSI for 33 busses over 428 scenarios 

of EV penetration levels. The VSI spike s represent break 

points when the load demand reaches its maximum limit, 

which might be critical for the system’s voltage stability due 

to increased demand. 

 

Fig. 12. Variation in bus voltages - case:2. 

 

Fig. 13. VSI with different penetration levels of EV 

charging. 

4.2.3. Case-3: Combined penetration of SPV and EV 

charging stations 

Figure 14 demonstrates the voltage behavior of buses 

under increasing EV and SPV penetration in Case 3 (Table 3). 

EV-connected buses experience noticeable voltage dips due to 

charging loads, whereas SPV-connected buses maintain 

relatively higher voltage levels. The presence of SPV 

generation helps offset voltage decline typically caused by EV 

loads. Additionally, converting PQ buses to PV buses (with ε 

= 1) results in a sharp voltage rise, further enhancing voltage 

stability. 

Table 3 (entries 16–22) outlines scenarios of simultaneous 

SPV and EV integration. When penetration levels increase 

beyond typical operating margins, voltages and VSI values 

begin to fluctuate, indicating system stress. As shown in 

Figures 14 and 15, high SPV–EV integration begins to unlock 

voltage thresholds at the substation level, challenging the 

system’s stability boundaries. 
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Fig. 14. Variation in bus voltages during SPV and EV 

penetration - case:3. 

 

Fig. 15. VSI with SPV and EVs. 

In entry 26 of Table 3, a scenario with low SPV (2 units) 

and high EV (5 units) penetration is analyzed. Figure 16 

reveals that this imbalance leads to the steepest voltage drops, 

particularly at EV-dominant buses. In contrast, SPV buses are 

less affected. Figure 17 confirms that high EV loading 

significantly weakens the VSI profile across the network, 

reinforcing the need for balanced integration of distributed 

generation and EV demand to preserve system reliability.

 

Fig. 16. Variation in bus voltages during high EV 

penetration and low SPV penetration. 

Figure 18 presents the voltage profile for Case 3, Entry 27 

(Table 3), involving low EV penetration (2 buses) and high 

SPV integration (5 buses). In the early stages, voltages rise 

uniformly across all buses due to high solar power availability. 

A further boost is observed when PQ buses are converted to 

PV buses, reinforcing the positive effect of distributed solar 

generation on system voltage support. Figure 19 shows the 

corresponding Voltage Stability Index (VSI) across all 33 

buses. During peak solar hours, the improved VSI indicates 

enhanced voltage stability. However, the results also reveal 

that excessive SPV injection—especially under light 

loading—may result in overvoltage conditions, signaling a 

need for coordinated control strategies. These findings 

highlight that while SPV integration can alleviate voltage 

drops, unregulated high penetration risks destabilizing the 

system through voltage exceedance. 

 

Fig. 17. VSI of 33 buses with high EV penetration and 

low SPV penetration. 

 

 

Fig. 18. Variation in bus voltages during high SPV 

penetration and low EV penetration. 

 

Fig. 19. VSI of 33 buses with high SPV penetration and 

low EV penetration. 

Case 3, Entry 28 (Table 3), illustrated in Figure 20, 

evaluates system behavior under simultaneous high 
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penetration of both SPV and EVs (7 buses each). Initially, EV 

charging demand leads to noticeable voltage dips, but as SPV 

generation increases, the network voltage recovers due to 

renewable energy being absorbed by EV loads. However, once 

SPV generation surpasses consumption, the network again 

experiences voltage rise beyond nominal levels. Figure 21 

reflects this in the VSI trends, showing that while combined 

SPV–EV integration can stabilize the system under balanced 

conditions, it can also introduce instability if unmanaged. This 

complex interaction emphasizes the importance of optimized 

coordination between renewable generation and flexible 

demand (e.g., EV charging), supporting the study’s insight 

that intelligent scheduling and real-time voltage regulation. 

 

Fig. 20. Variation in bus voltages during higher levels of 

SPV and EV penetration. 

 

Fig. 21. VSI of 33 buses with higher levels of SPV and EV 

penetration. 

4.3. Predictor-Corrector Continuation Power Flow Results 

A continuation power flow method has been used to 

evaluate the voltage stability characteristics of different 

distributed energy scenarios. The Predictor-Corrector 

Continuation Power Flow study was conducted on the IEEE 

33-bus radial distribution system in three scenarios: with SPV 

integration, EV integration, and both SPV and EV integrated. 

In each case, the ‘GAM’ and ‘LAM’ indicators graphs were 

drawn. 

The results from the Predictor-Corrector CPF for the case 

of SPV-only integration are shown in figure 22. When the 

generation factor ϵ is increased, voltages at the SPV buses 

increase slowly at first. If the active power produced at a bus 

is greater than the local demand (PG > PD), that particular bus 

goes through PQ–PV conversion. This results in a shift of 

voltage to 1.05 PU. The depicted plot highlights this transition 

point. Due to the method’s path-following continuation 

capability, there is efficient capture of the propulsion voltage 

control mechanism which serves the purpose of strategically 

routing generation within inert distribution networks. 

 

Fig. 22. Variation in bus voltages with SPV Penetration. 

Figure 23 shows the CPF results for a scenario with 

increasing EV loads at Buses 2, 3, 4, 20, 23, 26, and 30, 

without any local generation. As the loading parameter (λ) 

increases, these buses experience continuous voltage decline, 

with no sign of recovery. Remote buses, particularly Bus 30, 

show early voltage collapse due to their position at the far end 

of the radial feeder. While this behavior is consistent with 

expectations in radial networks under high load conditions, 

CPF effectively tracks the progression of instability, 

identifying the most vulnerable nodes early in the loadability 

curve.

 

Fig. 23. Variation in bus voltages with EV penetration. 

Figure 24 extends this analysis by incorporating 

simultaneous SPV generation at Buses 7, 8, 16, 19, 24, 32, and 

33 alongside the same EV load increase. While the EV-loaded 

buses still experience voltage reductions, the presence of 

distributed generation results in improved voltage stability 

margins and delays the onset of collapse. The key insight here 

is not just the voltage improvement at SPV buses, but the 

broader stabilizing effect across the network. This 

demonstrates that the coordinated deployment of SPV 

generation near or along stressed feeders can significantly 

mitigate voltage stress from EV charging loads, offering a 

practical strategy for enhancing resilience in future 

distribution systems. 
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Fig. 24. Variation in bus voltages with SPV and EV 

penetration. 

4.4. Jacobian-Based Sensitivity Analysis Results 

In this section, it interpret the results of the Jacobian-

Based Sensitivity Analysis (JBSA) applied to the IEEE 33-bus 

radial distribution system under three operational scenarios: 

(i) Electric Vehicle (EV) load penetration, (ii) Solar 

Photovoltaic (SPV) generation integration, and (iii) 

simultaneous SPV and EV presence. Unlike CPF, which maps 

the full loadability curve, JBSA offers direct insight into how 

voltage magnitudes respond to incremental power changes 

through sensitivity factors 
𝜕𝑉

𝜕𝑃
 and 

𝜕𝑉

𝜕𝑄
, computed using the 

inverse Jacobian at specific operating points. At the final 

loadability point λ = 190.6, corresponding to increased load at 

Bus 2, the voltage sensitivity factors 
𝜕𝑉

𝜕𝑃
 and 

𝜕𝑉

𝜕𝑄
 were calculated 

across all buses. As shown in Figure 25, a sharp peak in both 

sensitivity metrics is observed near Bus 18. This identifies it 

as a voltage-sensitive bus, even though the load increase 

originated from Bus 2. In contrast, Buses 1–5, located close to 

the substation, display minimal sensitivity. The radial 

structure of the network inherently causes higher sensitivity in 

mid and end-feeder buses, reinforcing JBSA’s effectiveness in 

identifying weak nodes prone to voltage collapse. 

 

Fig. 25. Voltage sensitivity factors with respect to EV 

penetration in bus 2. 

Under a different condition where generation is 

increased at Bus 7 up to ε = 1.20, the sensitivity profile, shown 

in Figure 26, still identifies Bus 18 as the most critical point. 

This result highlights that spatial proximity to the generation 

source does not guarantee local voltage stability improvement, 

especially in radial systems. While SPV injection supports 

voltage locally, its influence diminishes along the feeder, 

emphasizing the need for strategic generator placement and 

coordinated voltage control. 

 

Fig. 26. Voltage sensitivity factors with respect to SPV 

penetration in bus. 

In the third case, simultaneous EV load and SPV 

generation penetration were modeled with EVs added at Buses 

2, 3, 4, 20, 23, 26, and 30, and SPVs at Buses 7, 8, 16, 19, 24, 

32, and 33. The resulting sensitivity plot at λ = 18.50 and ε = 

2.1 is depicted in Figure 27. Here, a more distributed 

sensitivity pattern with multiple peaks is observed. This is 

indicative of complex interactions between load stress and 

generation support. Mid and end-feeder buses, once again, 

show higher sensitivity, underscoring their vulnerability under 

high EV penetration. Notably, the voltage support from SPV 

generation appears insufficient to fully mitigate the 

destabilizing effects of increased EV demand unless 

coordinated planning is applied. 

 

Fig. 27. Voltage sensitivity factors with respect to  

simultaneous SPV and EV penetration.
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4.5. Comparison of Voltage Stability Analysis Methods 

The IEEE 33-bus radial distribution system is analyzed in 

terms of memory and computational time against varying 

stability assessment using three methodologies—Predictor-

Corrector Continuation Power Flow (CPF), Jacobian-Based 

Sensitivity Analysis (JBSA), and Artificial Neural Network 

(ANN) is illustrated in table 5. Although CPF was accurate 

and traced the entire loadability path, it took the longest time 

of 20.34 minutes and moderate memory of 7.64 MB. JBSA 

spent only 2.86 minutes due to significant computation time 

savings, but used more memory (21.90 MB) because of the 

necessity to retain the complete Jacobian matrix and the 

approach, how- ever, completed the assessment in 0.6 seconds 

while using the least amount of memory (3.0265 MB), which 

increases the appeal of the method for real-time applications 

and quick decision making.  

 

Table 5. Comparison of voltage stability analysis methods 

 

5. Conclusion 

In this paper, it developed a complete framework for 

voltage stability analysis of radial distribution systems with 

high penetrations of Electric Vehicles (EVs) and Solar 

Photovoltaics (SPVs) using three approaches: Predictor-

Corrector Continuation Power Flow (CPF), Jacobian-Based 

Sensitivity Analysis (JBSA), and a proposed Artificial Neural 

Network (ANN) model. The developed ANN model was 

trained on detailed datasets developed for different operational 

scenarios such as simultaneous EV load increases and SPV 

generation at fundamental buses of the IEEE 33-bus radial 

distribution system. 

The CPF method precisely traces the P–V curves, as well 

as the loadability limits and point of voltage collapse. It 

estimates crucial indicators like Loadability Margin (LAM) 

and Generation Admissibility Margin (GAM) which supports 

effective understanding of system stability. However, due to 

the computational and time-intensive nature of the process, 

CPF is not real-time suitable. JBSA, on the other hand, 

analyzes the Jacobian matrix to provide a rapid assessment of 

voltage sensitivity factors which is very useful in terms of 

localizing weak buses. Although this method is faster than 

CPF, its high memory consumption without real-time 

responsiveness is still a disadvantage. 

The limitations described earlier are solved with the 

incorporation of VSI, LAM, and GAM as features and 

indicators at the system level in the proposed ANN-based 

method, which enables accurate and instantaneous stability 

predictions. The predictive accuracy achieved by the model 

using ANN is remarkable, considering it takes only 0.6 

seconds and 3.0265 MB of memory, compared to the CPF’s 

20.34 minutes and 7.64 MB, and JBSA’s 2.86 minutes and 

21.90 MB, both significantly higher in taxpayer resources in 

comparison to the ANN model. Moreover, the model’s 

adaptability under changing operational conditions enhances 

its reliability in real-time stability monitoring. 

In conclusion, the combination of LAM, GAM, VSI, and 

ANN boosts the voltage stability assessment associated with 

modern distribution systems. The findings validate the 

practicality of the proposed ANN model as it offers a 

dependable solution that is easily scaled and computed against 

the conventional techniques of CPF and JBSA, in particular 

for application in smart grids with high decentralized energy 

resources and electric vehicle integration due to the speed 

sensitivity of the system. Incorporating real- time forecasting 

of SPV generation and stochastic modeling of EV charging 

behaviors will be elements to consider in further work, along 

with optimization-based placement strategies for distributed 

generation and storage units. 

References 

[1] R. Wang, X. Bi, S. Bu, “Real-time coordination of 

dynamic network reconfiguration and volt-var control in 

active distribution network: A graph-aware deep 

reinforce- ment learning approach,” IEEE Trans. Smart 

Grid, vol. 15, no. 3, pp. 3288–3302, 2024. 

doi:10.1109/TSG.2023.3324474. 

[2] L. Peng, A. Zabihi, M. Azimian, H. Shirvani, and F. 

Shahnia, “Developing a robust expansion planning 

approach for transmission networks and privately-owned 

renewable sources,” IEEE Access, vol. 11, pp. 76046–

76058, 2023, doi: 10.1109/ACCESS.2022.3226695. 

[3] W. Huang, W. Zheng, D. J. Hill, “Distribution network 

reconfiguration for short-term voltage stability 

enhancement: An efficient deep learning ap- proach,” 

IEEE Trans. Smart Grid, vol. 12, no. 6, pp. 5385–5395, 

2021. doi:10.1109/TSG.2021.3097330. 

[4] R. Yan, T. K. Saha, “Investigation of voltage stability for 

residential customers due to high photovoltaic 

penetrations,” IEEE Trans. Power Syst., vol. 27, no. 2, 

pp. 651– 662, 2012. doi:10.1109/TPWRS.2011.2180741. 

[5] S. Nandi, S. R. Ghatak, P. Acharjee, “Placement of EV 

fast charging station in distribution system based on 

voltage stability index strategy,” in Proc. 6th IEEE Int. 

Conf. Condition Assessment Techniques in Electrical 

Systems (CATCON), 2022, pp. 46–51. 

doi:10.1109/CATCON56237.2022.10077648. 

Voltage Stability Analysis Methods Memory Required (MB) Total Time Required 

CPF 7.64 20.34 minutes 

JBSA 21.90 2.86 minutes 

ANN 3.0265 0.6 seconds 



INTERNATIONAL JOURNAL of SMART GRID  
K. Suresh et al., Vol.3, No.9, September, 2025 

174 
 

[6] A. Tavakoli, S. Saha, M. T. Arif, M. E. Haque, N. 

Mendis, A. M. T. Oo, “Impacts of grid integration of 

solar PV and electric vehicle on grid stability, power 

quality and energy economics: A review,” IET Energy 

Syst. Integr., vol. 2, no. 3, pp. 243–260, 2020. 

doi:10.1049/iet-esi.2019.0047. 

[7] N. K. K., J. N. S., V. K. Jadoun, “A combined approach 

to evaluate power quality and grid dependency by solar 

photovoltaic based EV charging station using hybrid 

optimization,” J. Energy Storage, vol. 84, 110967, 2024. 

doi:10.1016/j.est.2024.110967. 

[8] N. Sanampudi, P. Kanakasabapathy, “Integrated voltage 

control and frequency regulation for stand-alone micro-

hydro power plant,” Materials Today: Proc., vol. 46, pp. 

5027–5031, 2021. doi:10.1016/j.matpr.2020.10.403. 

[9] M. M. Haque, P. Wolfs, “A review of high PV 

penetrations in LV distribution net- works: Present status, 

impacts and mitigation measures,” Renew. Sustain. 

Energy Rev., vol. 62, pp. 1195–1208, 2016. 

doi:10.1016/j.rser.2016.04.025. 

[10] M. Karimi, H. Mokhlis, K. Naidu, S. Uddin, A. H. A. 

Bakar, “Photovoltaic penetration issues and impacts in 

distribution network—A review,” Renew. Sustain. 

Energy Rev., vol. 53, pp. 594–605, 2016. 

doi:10.1016/j.rser.2015.08.042. 

[11] J. Suganya, R. Karthikeyan, J. Ramprabhakar, “Voltage 

stabilization by using buck converters in the integration 

of renewable energy into the grid,” in New Trends in 

Computational Vision and Bio-Inspired Computing. 

Springer, 2020, pp. 103–113. doi:10.1007/978-3-030-

41860-0 10. 

[12] K. R. Bharath, H. Choutapalli, P. Kanakasabapathy, 

“Control of bidirectional DC– DC converter in 

renewable-based DC microgrid with improved voltage 

stability,” International Journal of Renewable Energy 

Research, vol. 8, no. 2, p. 7509, 2018. 

[13] A. Zabihi and M. Parhamfar, “EMPOWERING THE 

GRID: Toward the integration of electric vehicles and 

renewable energy in power systems,” International 

Journal of Energy Security and Sustainable Energy 

(IJESSE), vol. 2, no. 1, pp. 1–14, Jul. 2024, doi: 

10.5281/zenodo.12751722. 

[14] R. Gadal, O. Aziz, F. Elmariami, A. Belfqih, N. 

Agouzoul, “Voltage stability assessment and control 

using indices and FACTS: A comparative review,” J. 

Electr. Comput. Eng., 2023, Art. ID 5419372. 

doi:10.1155/2023/5419372. 

[15] H.  S.  Salama,  I.  Vokony,  “Voltage  stability  indices-

a  comparison and a review,” Comput. Electr. Eng., vol. 

98, 107743, 2022. 

doi:10.1016/j.compeleceng.2022.107743. 

[16] A. Selim, S. Kamel, A. S. Alghamdi, F. Jurado, “Optimal 

placement of DGs in distribution system using an 

improved Harris Hawks optimizer based on single- and 

multi-objective approaches,” IEEE Access, vol. 8, pp. 

52815–52829, 2020. 

doi:10.1109/ACCESS.2020.2980245. 

[17] A. A. Mohamed Faizal, N. Dwivedi, M. 

Sivasubramanian, S. Marisargunam, K. Rajesh, and N. 

Janaki, “Voltage stability improvement using PV 

coordinated control scheme in IEEE-9 bus system,” in 

Proc. ICRP, 2023, Springer, 2024. 

[18] A. A. Mohamed Faizal, N. Dwivedi, M. 

Sivasubramanian, S. Marisargunam, K. Rajesh, and N. 

Janaki, “A combined approach to evaluate power quality 

and grid dependency by solar photovoltaic based electric 

vehicle charging station using hybrid optimization,” J. 

Energy Storage, 2024. 

[19] K. Anthony and V. Arunachalam, “Voltage stability 

monitoring and improvement in a renewable energy 

dominated deregulated power system: A review,” e-

Prime – Adv. Electr. Eng., Electron. Energy, vol. 11, 

2025, Art. no. 100893, doi: 

10.1016/j.prime.2024.100893. 

[20] S. Ly, A. Singh, P. Vorobev, Y. C. Soh, and H. D. 

Nguyen, “Chance-constrained solar PV hosting capacity 

assessment for distribution grids using Gaussian Process 

and Logit learning,” arXiv preprint, arXiv:2505.19839, 

2025. 

[21] PV magazine International, “EV charging shapes PV 

investment, grid load in community study,” pv magazine 

International, Jun. 12, 2025. [Online]. Available: 

https://www.pv-magazine.com/2025/06/12/ev-charging-

shapes-pv-investment-grid-load-in-community-study/ 

[22] K. D. Dharmapala, A. Rajapakse, K. Narendra, Y. Zhang, 

“Machine learn- ing based real-time monitoring of long-

term voltage stability using volt- age stability indices,” 

IEEE Access, vol. 8, pp. 222544–222555, 2020. 

doi:10.1109/ACCESS.2020.3043935. 

[23] H. H. Goh, Q. S. Chua, S. W. Lee, B. C. Kok, K. C. Goh, 

K. T. K. Teo, “Evaluation of voltage stability indices in 

power systems using an artificial neural network,” 

Procedia Eng., vol. 118, pp. 1127–1136, 2015. 

doi:10.1016/j.proeng.2015.08.454. 

[24] A. K. Sharma, A. Saxena, B. P. Soni, V. Gupta, “Voltage 

stability assessment using artificial neural network,” in 

IEEE Int. Conf. Electrical, Computer and 

Communication Technologies (ICECCT), 2018, pp. 1–6. 

doi:10.1109/ICECCT.2018.8475510. 

[25] S. Sathyan, V. Pandi, A. Antony, S. R. Salkuti, P. 

Sreekumar, “ANN-based energy management system for 

PV-powered EV charging station with battery backup 

and vehicle-to-grid support,” Int. J. Green Energy, vol. 

21, pp. 1–16, 2023. 

doi:10.1080/15435075.2023.2246048. 

[26] R. D. Zimmerman, C. E. Murillo-Sa´nchez, R. J. 

Thomas, “MATPOWER: Steady-state operations, 

planning, and analysis tools for power systems research 

and education,” IEEE Trans. Power Syst., vol. 26, no. 1, 

pp. 12–19, 2011. doi:10.1109/TPWRS.2010.2051168. 

https://doi.org/10.1016/j.prime.2024.100893
https://www.pv-magazine.com/2025/06/12/ev-charging-shapes-pv-investment-grid-load-in-community-study/
https://www.pv-magazine.com/2025/06/12/ev-charging-shapes-pv-investment-grid-load-in-community-study/


INTERNATIONAL JOURNAL of SMART GRID  
K. Suresh et al., Vol.3, No.9, September, 2025 

175 
 

[27] R. D. Zimmerman, C. E. Murillo-Sa´nchez, 

MATPOWER User’s Manual, Ver. 7.1.2020. 

doi:10.5281/zenodo.4074122. 

[28] B. Bakhshideh Zad, J. Lobry, F. Valle´e, “A new voltage 

sensitivity analysis method for medium-voltage 

distribution systems incorporating power losses impact,” 

Electr. Power Components Syst., vol. 46, nos. 14–15, pp. 

1540–1553, 2018. 

doi:10.1080/15325008.2018.1511639. 

[29] M. Tostado, S. Kamel, F. Jurado, “Developed Newton–

Raphson based predic- tor–corrector load-flow approach 

with high convergence rate,” Int. J. Electr. Power Energy 

Syst., vol. 105, pp. 785–792, 2019. 

doi:10.1016/j.ijepes.2018.09.021. 

[30] N. Hatziargyriou, J. Milanoviç, C. Rahmann, V. 

Ajjarapu, C. Canizares, I. Erlich,  “Definition and 

classification of power system stability-revisited & 

extended,” IEEE Trans. Power Syst., vol. 36, no. 4, pp. 

3271–3281, 2021. doi:10.1109/TPWRS.2020.3041774. 

[31] K. Suresh, P. Kanakasabapathy, “A review of voltage 

stability issues in distribution system influenced by high 

PV penetration and its mitigation techniques,” Int. J. 

Renew. Energy Res., vol. 13, no. 1, pp. 236–244, 2023. 

doi:10.20508/ijrer.v13i1.13388.g8678. 

[32] J. Modarresi, E. Gholipour, A. Khodabakhshian, “A 

comprehensive review of the voltage stability indices,” 

Renew. Sustain. Energy Rev., vol. 63, pp. 1–12, 2016. 

doi:10.1016/j.rser.2016.05.010. 

[33] S. Mokred, Y. Wang, “Voltage stability assessment and 

contingency ranking in power systems based on a modern 

stability assessment index,” Results Eng., vol. 23, 

102548, 2024. doi:10.1016/j.rineng.2024.102548. 

[34] M. Aldeen, S. Saha, T. Alpcan, “Voltage stability 

margins and risk assessment in smart power grids,” IFAC 

Proc. Vol., vol. 47, no. 3, pp. 8188–8195, 2014. 

doi:10.3182/20140824-6-ZA-1003.02102. 

[35] S. Mokred, Y. Wang, T. Chen, “Modern voltage stability 

index for prediction of volt- age collapse and estimation 

of maximum load-ability,” Int. J. Electr. Power Energy 

Syst., vol. 145, 108596, 2023. 

doi:10.1016/j.ijepes.2022.108596.

 

[36] S. Mokred, Y. Wang, T. Chen, “A novel collapse 

prediction index for voltage stability analysis and 

contingency ranking in power systems,” Prot. Control 

Mod. Power Syst., vol. 8, no. 1, pp. 1–27, 2023. 

doi:10.1186/s41601-023-00279-w. 

[37] J. P. Roselyn, D. Devaraj, S. S. Dash, “Multi-objective 

genetic algorithm for voltage stability enhancement using 

rescheduling and FACTS devices,” Ain Shams Eng. J., 

vol. 5, no. 3, pp. 789–801, 2014. 

doi:10.1016/j.asej.2014.04.004. 

[38] A. N. Archana, T. Rajeev, “A novel reliability index 

based approach for EV charging station allocation in 

distribution system,” IEEE Trans. Ind. Appl., vol. 57, no. 

6, pp. 6385–6394, 2021. 

doi:10.1109/TIA.2021.3109570. 

[39] M. I. Akbar, S.A.A. Kazmi, O. Alrumayh, Z. A. Khan, 

A. Altamimi, M. M. Malik, “A novel hybrid 

optimization-based algorithm for optimal DG allocations 

in distribution networks,” IEEE Access, vol. 10, pp. 

25669–25687, 2022. 

doi:10.1109/ACCESS.2022.3155484. 

[40] T. H. B. Huy, D. N. Vo, K. H. Truong, T. Van Tran, 

“Optimal dis- tributed generation placement in radial 

distribution networks using enhanced search group 

algorithm,” IEEE Access, vol. 11, pp. 103288–103305, 

2023. doi:10.1109/ACCESS.2023.3316725. 

[41] A. K. Barnwal, L. K. Yadav, M. K. Verma, “A multi-

objective approach for voltage stability enhancement and 

loss reduction via reconfiguration and DG allocation,” 

IEEE Access, vol. 10, pp. 16609–16623, 2022. 

doi:10.1109/ACCESS.2022.3146333. 

[42] A. M. Tahboub, V. R. Pandi, H. H. Zeineldin, 

“Distribution system reconfigu- ration for annual energy 

loss reduction considering variable distributed generation 

profiles,” IEEE Trans. Power Delivery, vol. 30, no. 4, pp. 

1677–1685, 2015. doi:10.1109/TPWRD.2015.2424916. 

[43] S. H. Dolatabadi, M. Ghorbanian, P. Siano, N. D. 

Hatziargyriou, “An enhanced IEEE 33-bus benchmark 

test system for distribution system studies,” IEEE Trans. 

Power Syst., vol. 36, no. 3, pp. 2565–2572, 2021. 

doi:10.1109/TPWRS.2020.3038030. 


