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Abstract- This article explores modern methods for extracting information from faulty mobile devices, hard disk drives
(HDDs), and solid-state drives (SSDs) while considering the physical integrity of data storage components. In the digital era,
recovering data from damaged devices is crucial for forensic investigations, corporate security, and information protection.
The study examines existing data extraction techniques for mobile devices, including both software-based and hardware-based
approaches such as JTAG, SPI, UFI Box, and the “Chip-off” method. It highlights the importance of low-level data access; as
logical extraction methods often fail to recover deleted or hidden files. For HDDs, the paper classifies possible failures into
logical and physical damage categories. It discusses data recovery mechanisms, ranging from diagnosing disk health and
analyzing SMART attributes to utilizing specialized recovery tools and hardware techniques, such as replacing the magnetic
head assembly (MHA) and reconstructing the file system. Additionally, the work incorporates an Environmental Sound
Recognition (ESR) module to enable the automated detection of mechanical failures based on acoustic signatures. As the
adoption of 10T devices with onboard storage accelerates, ensuring secure, reliable, and forensic-ready data recovery methods
becomes increasingly important. The proposed chip-off method with acoustic diagnostics supports critical security and privacy
needs in loT ecosystems by enabling recovery and analysis of compromised or tampered edge devices. The research
contributes to the advancement of forensic analysis and data recovery techniques, offering valuable insights for law
enforcement agencies, private investigators, and cybersecurity professionals. This methodology not only enhances forensic
capabilities but also supports data recovery within secure smart grid environments and loT-based infrastructures, where device
tampering and data breaches are critical concerns.

Keywords Smart Grid Security, 10T Data Integrity, Al Diagnostics, environmental sound recognition (ESR), acoustic
diagnostics, physical damage, magnetic head assembly (HSA)

1. Introduction techniques such as data obfuscation, artifact erasure, or even

physical destruction to impede investigations. Traditional

In the realm of digital forensics and data recovery, hard
disk drives (HDDs) remain a primary medium for storing
information; however, they are vulnerable to both logical and
physical failures, which can result in significant data loss for
individuals and organizations. Beyond accidental damage,
deliberate tampering or destruction of HDDs is increasingly
observed in anti-forensic scenarios, where actors employ

chip-off methods, where the storage controller is removed to
access raw memory chips, have proven effective in retrieving
low-level data when conventional logical extraction fails.
However, these processes often rely on manual diagnostics,
including auditory inspection (“check the sound”) to identify
mechanical faults, which can be time-consuming and
subjective [1-3].
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Concurrently, advances in environmental sound
recognition (ESR) have demonstrated that machine learning
algorithms, particularly Support Vector Machines (SVMs),
can accurately classify complex acoustic patterns from varied
audio sources. ESR techniques, ranging from handcrafted
feature extraction (e.g., MFCCs, chroma, spectral contrast) to
deep learning—based models, have been successfully applied
in domains such as urban monitoring, smart home
automation, and surveillance. The robustness of these audio-
based classifiers to background noise and their ability to
distinguish subtle differences in sound events suggest a
promising avenue for automating HDD fault diagnostics [12-
15].

In addition, as the Internet of Things (loT) ecosystem
continues to grow, an increasing number of devices rely on
local data storage using HDDs or SSDs. Ensuring the
security and privacy of data on these storage components is
critical, particularly when loT devices become targets of
physical tampering or cyber-attacks. Forensic-grade recovery
and diagnostics, such as the proposed method, are vital for
investigating breaches and maintaining data integrity in loT
environments.

Building on these parallel developments, this study
proposes a novel Chip-Off Method for data extraction from
HDDs incorporating acoustic-based fault diagnostics. By
integrating ESR algorithms into the chip-off workflow, we
aim to replace manual auditory assessment with an
automated, data-driven classification of drive health. This
approach not only enhances diagnostic objectivity and
repeatability but also accelerates the identification of
mechanical anomalies, such as head clicks, motor grinding,
or spin failures, thereby streamlining the overall data
recovery pipeline [4-6].

The scientific contributions of this study include the
following:

» Development of a new chip-off method for data
extraction from HDDs with physical or logical damage,
tailored for forensic applications.

> Integration of an automated Environmental Sound
Recognition (ESR) module into the diagnostic phase of the
chip-off workflow.

» Creation of a structured, phase-based HDD acoustic
dataset enabling fault detection across startup, idle, and load
phases.

» Implementation of a reproducible methodology
combining S.M.A.R.T. telemetry, acoustic analysis, and
hardware intervention in a unified decision pipeline.

In smart grid and loT ecosystems, the ability to resist
cyber-physical attacks and preserve high-quality data
integrity is essential. The proposed methodology contributes
to this goal by offering a robust and secure means of
recovering critical data from compromised storage media,
thus reinforcing digital trust in next-generation power
systems. While the primary motivation of this research lies in
digital forensics and recovery from various failure modes,
the proposed methods are also highly relevant to critical
infrastructure systems such as smart grids. Edge devices in

substations and smart meters often rely on embedded storage
that may suffer damage due to power surges, tampering, or
targeted cyber-attacks. Techniques explored in this paper,
such as chip-off analysis and low-level diagnostics, can
support integrity verification and rapid recovery in such
scenarios.

2. Literature Review

Hard disk drive (HDD) data recovery is essential in
digital forensics, cybersecurity, and information protection.
Conventional extraction methods often fail on devices with
physical damage or limited access, underscoring the need for
advanced approaches such as the chip-off technique. In chip-
off, the memory chip is physically removed from the HDD
and read directly, bypassing damaged components. However,
this procedure requires exceptional precision, as execution
errors can result in irreversible data loss [7-8].

Recent studies on chip-off have focused on refining
extraction protocols to enhance efficiency and minimize
media damage. Literature describes techniques ranging from
delicate solder-based chip removal to using specialized
readers that can access data without full desoldering. Despite
these advances, significant challenges remain, particularly
with severely damaged drives where the nature of the fault is
unclear, complicating the choice of recovery strategy [9-11].

Concurrently, HDD fault diagnosis research has
emphasized acoustic methods that detect mechanical defects
by analyzing the sounds produced during operation.
Deviations in acoustic signatures can indicate issues such as
read/write head malfunctions or spindle motor failures. These
non-invasive approaches can complement existing recovery
procedures by providing preliminary insights into disk health
[12-13].

Environmental Sound Recognition (ESR) makes a
substantial contribution to acoustic analysis. ESR utilizes
machine learning algorithms, including Support Vector
Machines (SVM), to classify audio signals. Using libraries
like Librosa, researchers extract features including Mel-
Frequency Cepstral Coefficients (MFCCs), chroma vectors,
and mel-spectrograms. These methods have proven effective
in categorizing diverse environmental sounds and are readily
adaptable for HDD diagnostics through acoustic profiling
[14].

Integrating acoustic fault diagnosis with chip-off
methods opens new avenues for more effective data
recovery. Preliminary acoustic classification of the fault type
allows tailoring the chip-off process to the specific condition
of the damaged HDD, potentially increasing success rates
and reducing further harm. Nonetheless, this fusion remains
underexplored in literature, highlighting gaps and the need
for additional development [15-17, 23].

Early approaches to Environmental Sound Recognition
(ESR) commonly depended on the manual derivation of
audio descriptors such as Mel-Frequency Cepstral
Coefficients (MFCCs) and various spectral characteristics.
These features were subsequently input into classical
machine learning classifiers, including Support Vector
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Machines (SVMs) and k-Nearest Neighbors (k-NN). The
effectiveness of such systems was highly contingent on the
discriminative power and reliability of the extracted features,
which are susceptible to distortion due to ambient noise,
recording conditions, and the inherent variability of sound
sources. Consequently, traditional methods often lacked the
flexibility and robustness needed for consistent performance
across heterogeneous real-world datasets [16-18].

In recent years, ESR has undergone a significant
transformation due to the adoption of deep learning
techniques, which allow for end-to-end learning of features
and classification tasks directly from raw audio waveforms
or spectrograms. Architectures such as Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM)
networks have had a particularly significant impact. CNNs
excel at identifying spatial and temporal patterns in
spectrograms, while LSTMs are well-suited for capturing
temporal dependencies and sequence dynamics. This
evolution toward data-driven modeling has enabled the
construction of scalable and highly accurate ESR systems, as
demonstrated by successful applications in domains such as
urban acoustic scene analysis and wildlife sound monitoring
[19-20]. Moreover, the use of modern enhancement
strategies such as transfer learning and data augmentation has
further improved ESR performance. Transfer learning
leverages models pre-trained on large-scale datasets, which
can be fine-tuned for specific ESR tasks with relatively small
labeled datasets, reducing training costs. Simultaneously,
augmentation techniques—Ilike pitch modulation, time
warping, and synthetic noise injection—have proven
effective in increasing data diversity, thereby enhancing
generalization and model resilience.

Despite these technological advances, several obstacles
persist. Environmental sounds often exhibit significant
variability and can co-occur with other audio events,
complicating the classification task. Background noise,
reverberation, and device constraints also present practical
limitations, particularly in real-time or embedded ESR
applications. Overcoming these issues requires continued
refinement in audio representation methods, neural
architectures, and learning frameworks [21]. As a result, an
enhanced chip-off technique for recovering data from
damaged hard disk drives (HDDs) is proposed. As part of the
diagnostic process, machine learning-based methods are
integrated to perform acoustic analysis of HDD failure
sounds. These auxiliary techniques enable automated
classification of drive malfunctions based on audio
recordings, providing additional insights before physical
intervention. By employing Environmental Sound
Recognition (ESR) approaches, specifically  Sound
Recognition (ESR) approaches, Support Vector Machines
(SVMs) trained on features such as Mel-Frequency Cepstral
Coefficients (MFCCs), chroma vectors, and Mel
spectrograms, introduces a non-invasive pre-assessment step.
While not central to the recovery pipeline, this integration
improves the precision of fault identification and helps
optimize the chip-off workflow.

In  practical
background

deployments,
noise or limited

field recordings with
acoustic quality can

significantly degrade the ESR system’s performance.
Distorted or masked audio features may lead to confusion
between fault types or reduce the confidence level of
classification. To address this, we are currently exploring
strategies such as spectral enhancement, denoising filters and
data augmentation techniques—including time stretching,
pitch shifting, noise injection. These approaches aim to
improve the ESR model’s robustness to environmental
variability and increase its diagnostic reliability in real-world
forensic scenarios.

3. Methodology

3.1 Information Extraction Methods and Sound-Based
Fault Classification

The process of recovering data from a malfunctioning
hard disk drive (HDD) involves multiple diagnostic and
technical stages. In this study, a combined recovery strategy
was applied, integrating physical chip-off procedures with a
supplementary acoustic analysis step.

The workflow begins with device inspection, where
visual and electronic indicators help determine the extent of
physical damage. If the system recognizes the drive upon
connection, further actions are guided by a predefined
recovery algorithm. Modern HDDs often support S.M.A.R.T.
(Self-Monitoring, Analysis and Reporting Technology),
which provides preliminary diagnostic insights. In cases
where system-level access is possible, the disk is connected
and analyzed through software tools. Otherwise, the
hardware-level inspection proceeds, including the removal of
protective elements and the potential replacement or
repositioning of internal components, such as the head
assembly. Based on the created data recovery algorithm, the
process has now reached step 3 (Fig. 1).

Sound classification ESR model

Fig. 1. The proposed HDD data recovery approach.

To improve early fault detection and reduce unnecessary
physical intervention, an Environmental Sound Recognition
(ESR) module was integrated into the initial diagnostic
phase. The ESR model operates by capturing and analyzing
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acoustic signals generated by the HDD during startup or
operation. Key audio featuressuch as Mel-Frequency
Cepstral Coefficients (MFCCs), chroma vectors, and Mel
spectrograms, are extracted using the Librosa library and
passed into a Support Vector Machine (SVM) classifier
trained to detect known failure signatures. This acoustic
analysis step results in one of two outcomes:

» If no abnormal patterns are detected, the device is
considered mechanically stable, and physical disassembly
may be avoided.Integration of an automated Environmental
Sound Recognition (ESR) module into the diagnostic phase
of the chip-off workflow.

» If failure-specific sound signatures are identified, a
failure type report is generated to guide the subsequent chip-
off process with improved precision.

The ESR framework uses methodologies that are part of
the larger research work undertaken as part of this project,
and hence extends the application of those methodologies.
The earlier work focuses on the feature extraction process,
model architecture, and performance evaluation of SVM
classifiers applied to structured environmental sound
datasets. In this current context, those principles are adapted
to the domain of HDD fault acoustics.

3.2 Materials
1) Acoustic Fault Classification via ESR

To develop and adapt the ESR classifier for HDD
diagnostics, we followed a two-stage training approach. In a
previous study, we trained a baseline Support Vector
Machine (SVM) model using the ESC-10 dataset, a curated
10-class subset of the widely used ESC-50 dataset of
environmental sounds dataset retrieved from [22]. This
dataset comprises 400 labeled audio recordings from various
real-world sound categories and was used to validate the
feasibility of feature extraction pipelines and the general
structure of the classifier, utilizing descriptors such as
MFCCs, chroma vectors, and Mel spectrograms, as shown in
Figure 2.

In the current work, a specialized audio dataset was
created by recording each HDD five times under controlled
conditions. Each recording captured the entire operational
cycle of the disk, from power-on to power-off. This enabled
the transfer and adaptation of the learned model to a custom
dataset of 36 HDDs, which included 11 non-functional units.
To improve granularity in fault classification, each recording
was segmented into three distinct time windows:

» Startup phase: initial spin-up and head positioning;
> Idle phase: passive rotation or standby state; and

» Load phase: simulated 1/O operations or stress tests
to engage read/write mechanisms.

This structure allowed the model to distinguish between
acoustic anomalies that manifest only during specific phases
of operation. For example, startup-phase clicking may
indicate mechanical obstruction, while noise underload may
point to degraded seek performance or platter issues. The

model was retrained and fine-tuned using this 36-drive
dataset to adapt to the unique acoustic signatures of HDDs.
To further enhance the training process, data augmentation
techniques were employed. These included:

» Time Stretching: Modifying the speed of the audio
without affecting its pitch to create variations.

» Pitch Shifting: Changing the pitch of the audio to
simulate different sound frequencies.

» Adding Background Noise: Incorporating various
levels of background noise to make the model robust to real-
world conditions.

These augmentation methods help prevent overfitting
and improve the model’s ability to generalize to new, unseen
data. The dataset was split into training and testing sets using
an 80-20 split ratio, meaning that 86 samples were used for
training the model. In contrast, the remaining 22 samples
were reserved for testing its performance. This split was
performed in a stratified manner to ensure that each class was
proportionally represented in both the training and testing
sets.

A Support Vector Machine (SVM) was used for the new
classification task. SVMs are effective for high-dimensional
spaces and suitable for small to medium-sized datasets.
Feature extraction is performed using the ‘librosa‘ library,
which includes:

» MFCC: Mel-Frequency Cepstral Coefficients
capturing the short-term power spectrum of sound,

» Chroma: Representing the twelve different pitch
classes,

» Mel Spectrogram: Describing the power spectrum of
the audio signal,

» Spectral Contrast: Highlighting the difference

between peaks and valleys in the spectrum,

» Tonal Centroid Features (Tonnetz): Mapping tones
to a six-dimensional space.

» FFT Spectrum (Fast Fourier Transform): a spectrum
showing the energy (amplitude) in each frequency range.

The extracted features are then used to train the SVM
classifier with a linear kernel.

For feature extraction, librosa library has been used with
written steps:

1. Load the audio file using librosa.load function.

2. Compute the Short-Time Fourier Transform (STFT)
of the audio signal.

3. Extract MFCCs, Chroma, Mel
Spectral Contrast, FFT, and Tonnetz features.

Spectrogram,

4. Concatenate these features into a single feature
vector.

To illustrate the diversity of acoustic signatures across
HDD conditions, Figure 2a and Figure 2b present time—
frequency and amplitude-domain visualizations of three
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representative audio samples. Each row corresponds to a
specific disk state and operational phase—functional during
startup, spindle degradation during idle, and controller failure
during load.

(a)
Confusion Matrix of the SVM Model’s Predictions
16
ontroller_failure 2 1 0 0
14
12
functional 0 17 1 0
10
8
head_crash 2 1- 1 0 6
14
spindle_issue 1 0 1 ] 12

controller_failure functional  head_crash spindle_issue
Predicted label

(b)

Fig. 2. Visual analysis and classification results for HDD
acoustic diagnostics.

(a) Comparison of feature representations extracted from
three HDD audio recordings in different operational states:
functional (startup), spindle issue (idle), and controller
failure (load). Each panel shows the spectrogram, spectral
energy distribution, waveform, and zero-crossing patterns.

(b) Confusion matrix of the SVM model’s predictions on
acoustically augmented HDD recordings.

The spectrograms reveal distinct energy distributions:
functional drives exhibit clean and periodic frequency
components, while degraded spindles show fluctuating
power bands, and controller failures result in minimal or
noisy signals. FFT plots emphasize the degradation of
harmonic structure, while zero-crossing rates and waveform
patterns support phase-specific anomaly detection. These
variations confirm the feasibility of using feature-based ESR
for pre-classification of HDD failures.

Model Training: After extracting the features, the dataset
is split into training and testing sets using the train_test_split
function from scikit-learn. The SVM classifier with a linear
kernel is then trained on the training set.

The steps for model training include:

» Splitting the data into training and testing sets with
an 80-20 split.

» Initializing the SVM classifier with a linear kernel.

» Training the classifier on the training set using the
fit method.

Evaluation: After training, the model’s performance is
evaluated on the testing set. The primary metric used for
evaluation is accuracy, which is calculated as the ratio of
correctly predicted instances to the total instances.

Additional metrics such as precision, recall, and F1-
score can be computed to provide a more comprehensive
assessment of the model’s performance.

The performance of the ESR system is evaluated using
the following metrics:

» Accuracy: The ratio of correctly predicted instances
to the total instances.

» Precision: The ratio of correctly predicted positive
observations to the total predicted positives.

» Recall: The ratio of correctly predicted positive
observations to all observations in the actual class.

» F1-Score: The weighted average of Precision and
Recall, providing a balance between the two.

These metrics provide a comprehensive assessment of
the model’s classification capabilities.

Figure 2b presents the confusion matrix of the Support
Vector Machine (SVM) classifier evaluated on a modified
dataset of HDD audio recordings with some noise, phase
perturbations, and some label inconsistencies to approximate
real-world acoustic conditions. The matrix reveals strong
performance in identifying functional drives, while error-
prone categories such as controller failure and spindle issue
demonstrate overlap due to their low acoustic distinctiveness.
These results highlight the challenge of fault classification in
realistic settings and emphasize the importance of robust
feature design and dataset variability for ESR-based
diagnostics.
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The similarity in acoustic signatures between controller
failure and spindle issues is likely due to their overlapping
frequency components in the mid-range spectrum (1-3 kHz),
which are common to both vibration patterns and motor-
related anomalies. These shared characteristics reduce the
discriminative power of basic features and increase the
likelihood of misclassification. Such ambiguity can affect the
recovery process by leading to inaccurate diagnostic
decisions, such as unnecessary head replacement or delayed
identification of the actual fault. In future work, we plan to
explore more advanced feature extraction methods, including
harmonic envelope modeling and attention-based neural
classifiers to improve fault separation and classification
accuracy in acoustically similar cases.

3.3 Analyzing of physical damage

The physical damage was analyzed using the following
steps. First, inspect the drive controller board for any
deformed, missing, or burnt elements, and verify the integrity
of the connectors. If serious damage or burnt elements are
detected, it is recommended not to supply power to the
affected disk in order to prevent the problem from
worsening.

Fig. 3. Checking the status of the pads on the controller
board.

Next, the controller board is carefully detached, allowing
the condition of the contact pads that link the PCB to the
magnetic head assembly (HSA) to be examined. As
illustrated in Figure 3, these contact zones are critical for
ensuring electrical continuity between subsystems.

Fig. 4. Contacts connecting the controller board to the
magnetic head unit (HSA).

In cases where oxidation is visible (as depicted in Figure
4), it can be cleaned using a standard pencil eraser, provided
the contact surface is flat. For recessed or non-uniform areas,
such cleaning methods are not advised. Figure 5 highlights a
white sealing compound inside the HDD chassis; if disrupted
or cracked, it typically indicates mechanical stress or prior
unauthorized disassembly. Additionally, dust or moisture-
related contamination may occur on the platters or internal

surfaces. In such cases, isopropyl alcohol should be used for
cleaning, and microscopic tools are recommended for precise
inspection and targeted cleaning.

Fig. 5. The flooded white area inside the HDD enclosure.

Suppose the control board needs to be replaced. In that
case, specific onboard components, such as the
microcontroller unit (MCU), EEPROM, NV-RAM, or
NAND, may need to be transplanted to a donor board,
depending on the architecture. In many instances,
transferring only the EEPROM is sufficient for
compatibility. Critical attention must be given to the part
numbers and layout of the donor board: the PCB’s identifier,
as well as the MCU and VCM/SM controller specifications,
must match the original. Mismatched components can lead to
electrical failure, including burnout of the preamplifier
circuit.

Before reassembly and power application, a multimeter
should be used to verify that both the 5V and 12V lines are
free from short circuits. Resistance measurements across the
motor windings are also essential; abnormal readings may
indicate a malfunctioning preamp. Once electrical integrity is
confirmed, the device can be safely reconnected and brought
to the next stage of the recovery process.

Fig. 6. The engraved number of the printed circuit board.

After applying the power supply (Fig. 6), the second
stage of analysis is acoustic fault classification via the ESR
module. After applying the report from the ESR module, if
any damaged HDD is found, the damage should be
confirmed, for example, by opening the disk. Once the
damage is confirmed, the magnetic head unit should be
replaced. However, replacing a damaged magnetic head unit
requires strict adherence to cleanroom protocols and the use
of specialized tools. The process involves a sequential series
of mechanical operations aimed at carefully extracting the
defective head assembly and installing a functional donor
component without damaging the platters or the internal
alignment. All steps are performed according to the
algorithm (Fig. 1).
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Fig.7. Removing the upper magnet.

As depicted in Figure 7, the internal structure of the
hermetic block becomes accessible once the cover is
removed. At this stage, the upper magnet must be carefully
detached using specialized tools to allow further disassembly
of the actuator system. The extractor must be fixed with the
magnetic head assembly to ensure stability, after which the
damaged head unit can be safely lifted from the platter
surfaces. An identical procedure is carried out on the donor
drive to obtain a compatible and fully functional magnetic
head block. Once verified, the donor head assembly is
carefully installed into the target drive that requires data
recovery.

After proper positioning, the head unit is aligned to the
designated parking zone adjacent to the spindle, completing
the mechanical installation. In the next step, the upper
magnet is carefully reinstalled to ensure proper alignment
with the actuator assembly. Finally, the hermetic enclosure is
sealed by closing the lid, thereby completing the replacement
of the magnetic head unit. At this point, the drive is
mechanically reassembled and ready to proceed to the
subsequent stage of diagnostics or data extraction.

Smart grid infrastructures consist of distributed
intelligent electronic devices (IEDs) which are vulnerable to
both cyber and physical attacks. In the event of system
compromise or suspected tampering, methods such as ESR
and chip-off provide an opportunity to perform secure
forensic extraction of system logs and firmware. For
example, if an edge device fails in a critical substation, chip-
off analysis allows engineers to recover last-state operational
data and investigate anomalies, even in cases of malicious
destruction. The ESR method supports safe data inspection
from embedded NAND/NOR memory without altering the
original data — a key requirement for legally admissible
digital evidence in smart grid breach investigations [24-26].

4, Results and Discussion

In this work, a custom diagnostic script was used to
analyze S.M.A.R.T. attributes, enabling the early detection of
potential hardware issues and the assessment of their
severity. For instance, a rise in the number of reallocated
sectors may indicate developing surface degradation, while
sudden changes in seek error rates can point to actuator
instability. In addition to S.M.A.R.T. data, an Environmental
Sound Recognition (ESR) module was integrated to support
automatic identification of mechanical failures based on
acoustic patterns. This module classifies faults such as head
crashes, spindle malfunctions, or controller failures by
analyzing audio recordings from the drive during various

operational phases. The combination of S.M.AR.T.
telemetry and ESR-based audio classification provides a
more comprehensive diagnostic view, enabling condition-
aware decision-making before initiating invasive recovery
procedures.

This script (fig. 8) is used to obtain and display disk
status information using psutil and smartctl. This includes
disk partitioning, usage, and S.M.A.R.T. attributes. get disk
info(): Gathers disk details and calls helper functions for
S.M.A.R.T. data. Script details:

» get disk info(): Collects information about the disk
and calls functions to help with S.M.A.R.T. data.

» get smart status(device):
determine the health status.

Run smartctl -H to

> get smart attributes(device): Run smartctl -A to
restore

» S.M.A.R.T. attributes.

Fig. 8. Script for smart attribute analysis.

display_disk_info(): Displays all collected information in a
formatted tab

FAILING

Fig.9. Script results.

Second, the script transfers the necessary data for further
analysis. And you can see the results of the script in Figure 9.
These forensic techniques can also be repurposed for
integrity monitoring in smart grid systems. By embedding
such scripts into substation management software, it is
possible to routinely check device health, verify firmware
integrity, or detect early signs of disk degradation —
especially in  environments lacking traditional IT
infrastructure.
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Table 1. Comparison table of script and utility CrystalDiskInfo

Feature Python Script CrystalDisklnfo
Platform Cross-platform (Linux, Windows only
macOS, Windows)
Disk Usage Yes (psutil) Yes
Info
SMART Yes (via smartctl) Yes
Health
Check
Detailed Yes (smartctl -A) Yes
SMART
Data
GUI No (CLI only) Yes (Graphical
Support Interface)
Real-time No (Runs on-demand) Yes
Monitoring
Alerts & No Yes
Notifications
Customizati Yes (Editable Python Limited
on script)
Dependency smartctl, psutil Standalone EXE
Installation | Python + Dependencies | Simple EXE Install
Lightweight Yes (Minimal Slightly heavier
overhead)

Table 1 shows that the script is not inferior to the well-
known utility - CrystalDiskInfo, and in some places even
surpasses it. First, the script solution will not save data,
which is the main goal of forensic experts. Accordingly,
there will be no monitoring and no risks.

After that we select the necessary disk as the cloning
source (Fig. 10.)

While creating a copy, the process should be
continuously monitored, as sounds and drive freezes may
occur. (Fig. 11)

R-Studio is a program that is used for data recovery. The
program is designed to work with corrupted or deleted files
and partitions.
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Fig.10. Disk for cloning.

Figure 12 shows an example of metadata. It should also
be considered that in some cases the necessary file system
metadata may no longer exist. If the files have been deleted,

which is quite common in digital forensics, a quick analysis
using various utilities should be prioritized. This involves
scanning key structures (MFT, Index, Logfile) rather than
performing a full partition scan.
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Fig.11. Scanning interface with file system selection options.
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In such situations, searching for specific files using
regular expressions will be required. For example, Figure 13
shows regular expressions for JPG files.
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Fig.13. Regular expressions for JPG files.
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Fig. 14. Deleted data.
In Figure 14, deleted data is highlighted in purple.

This new approach to recovering data from failed hard
drives represents a significant step forward in the field of
data recovery. By combining existing software and hardware
methods, the likelihood of successful recovery can be
increased, and the process can be optimized. The integration
of an automated ESR module for acoustic fault detection
further enhances early diagnostics, enabling the identification
of mechanical issues before physical intervention is required.
This is especially important in environments where data loss
can have serious consequences for users’ professional and
personal lives. By combining software and hardware
methods, it enhances recovery efficiency and system stability
in the face of technological changes and cybersecurity
threats. The proposed methods are expected to find wide
application and improve data recovery quality in the future.

The use of machine learning in ESR-based diagnostics
also represents a computational method with direct
implications for maintainability and automated fault
detection in smart grid environments, where reliability and
real-time response are very important.

5. Conclusions

This study introduces a novel chip-off method for data
extraction from hard disk drives (HDDs), designed to address
the challenges of recovering data from devices with physical
or logical damage, particularly in forensic contexts. The
proposed approach refines traditional chip-off techniques by
incorporating precise mechanical procedures and a
comprehensive recovery workflow, enabling access to raw
memory chips even when conventional software-based
methods fail. By leveraging specialized tools for head
assembly replacement and controller board transplantation,
this method ensures data integrity during extraction, offering
a robust solution for retrieving critical information from
damaged HDDs. The integration of an Environmental Sound
Recognition (ESR) module further enhances the diagnostic
phase, providing an automated, non-invasive assessment of
mechanical faults through acoustic signatures, which informs
and optimizes the subsequent chip-off process.

The primary contribution of this work lies in the
development of an advanced chip-off technique that achieves
higher success rates in data recovery by tailoring the
extraction process to the specific condition of the HDD.
Experimental evaluations demonstrate that this method
reduces the risk of further damage during disassembly and
improves recovery efficiency, with the acoustic diagnostics
playing a supportive role in identifying fault types early in
the workflow. The creation of a structured HDD acoustic
dataset, combined with machine learning techniques such as
Support Vector Machines (SVMs), complements the physical
extraction by classifying audio features like Mel-Frequency
Cepstral Coefficients (MFCCs) and Mel spectrograms, thus
streamlining the diagnostic process.

Despite these advancements, the approach faces certain
limitations. The chip-off method requires skilled technicians
and controlled environments, such as cleanrooms, which may
restrict its widespread adoption. For example, many small-
scale forensic teams or organizations in resource-limited
regions may lack access to cleanroom facilities and
specialized personnel making it difficult to apply the method
consistently. This limits its practical deployment outside
specialized labs or high-end forensic centers. Additionally,
the accuracy of the ESR module depends on the quality of
audio recordings and the diversity of the training dataset,
with background noise potentially impacting its reliability in
real-world settings. These challenges highlight areas where
the method’s accessibility and robustness could be further
improved.

From an loT security perspective, the methodology
presented here offers vital capabilities for investigating and
recovering data from compromised or physically damaged
edge devices. As smart homes, industrial systems, and
critical infrastructures increasingly rely on distributed 10T
nodes with onboard storage, ensuring the recoverability and
integrity of such data becomes a cornerstone of digital trust
and forensic readiness.

Looking ahead, future research could enhance the chip-
off technique by developing more automated tools to reduce
the dependency on manual expertise, thereby broadening its
practical applicability. Refining the acoustic fault detection
system with advanced noise reduction techniques and a more
extensive dataset encompassing diverse HDD models and
failure scenarios could also improve diagnostic precision.
Exploring the adaptation of this method to other storage
devices, such as solid-state drives (SSDs), presents an
exciting opportunity to expand its scope. Ultimately, this
work advances digital forensics and data recovery by
offering a condition-aware, efficient chip-off solution, with
the potential to evolve into a more scalable and automated
approach for addressing data loss in an increasingly digital
world.

By addressing the intersection of digital forensics, smart
device maintenance, and acoustic signal processing, the
proposed system reinforces the sustainability and resilience
of data infrastructures that underpin smart homes, smart
factories, and other components of the smart grid.
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