
INTERNATIONAL JOURNAL of SMART GRID  
L. Rzayeva et al., Vol.9, No.3, September, 2025 

Secure Chip-Off Method with Acoustic-based Fault 

Diagnostics for IoT and Smart Grid Data Recovery 
 

Leila Rzayeva * , Abilkair Imanberdi ** , Aigerim Alibek *** , Ali Myrzatay**** , Yerassyl 

Yermekov*****‡ , Korhan Kayisli****** , Gerald Feldman*******  

 

* Research and Innovation Center “CyberTech”, Astana IT University, Astana 010000, Kazakhstan;  

** Dean’s Office, Astana IT University, Astana 010000, Kazakhstan;  

*** Research and Innovation Center “CyberTech”, Astana IT University, Astana 010000, Kazakhstan  

**** Research and Innovation Center “CyberTech”, Astana IT University, Astana 010000, Kazakhstan;  

*****Department of Information security, Faculty of Information Technologies, L.N. Gumilyov Eurasian National University, 

Astana 010000, Kazakhstan;  

****** Gazi University, Eng. Fac. Electrical-Electronic Eng. Ankara, Turkiye; korhankayisli@gmail.com 

******* Birmingham City University (Faculty of Computing, College of Computing);  

(l.rzayeva@astanait.edu.kz, a.imanberdiyev@astanait.edu.kz, a.zhenisbekkyzy@astanait.edu.kz, mirzataitegiali@gmail.com, 

yerassylyermekov@gmail.com, korhankayisli@gmail.com, Gerald.Feldman@bcu.ac.uk ) 
 

‡ Corresponding Author y.yermekov@gmail.com, 010000, Tel.: +7 706 639 2930. 

Received: 18.06.2025 Accepted:24.07.2025 
 

Abstract- This article explores modern methods for extracting information from faulty mobile devices, hard disk drives 

(HDDs), and solid-state drives (SSDs) while considering the physical integrity of data storage components. In the digital era, 

recovering data from damaged devices is crucial for forensic investigations, corporate security, and information protection. 

The study examines existing data extraction techniques for mobile devices, including both software-based and hardware-based 

approaches such as JTAG, SPI, UFI Box, and the “Chip-off” method. It highlights the importance of low-level data access; as 

logical extraction methods often fail to recover deleted or hidden files. For HDDs, the paper classifies possible failures into 

logical and physical damage categories. It discusses data recovery mechanisms, ranging from diagnosing disk health and 

analyzing SMART attributes to utilizing specialized recovery tools and hardware techniques, such as replacing the magnetic 

head assembly (MHA) and reconstructing the file system. Additionally, the work incorporates an Environmental Sound 

Recognition (ESR) module to enable the automated detection of mechanical failures based on acoustic signatures. As the 

adoption of IoT devices with onboard storage accelerates, ensuring secure, reliable, and forensic-ready data recovery methods 

becomes increasingly important. The proposed chip-off method with acoustic diagnostics supports critical security and privacy 

needs in IoT ecosystems by enabling recovery and analysis of compromised or tampered edge devices. The research 

contributes to the advancement of forensic analysis and data recovery techniques, offering valuable insights for law 

enforcement agencies, private investigators, and cybersecurity professionals. This methodology not only enhances forensic 

capabilities but also supports data recovery within secure smart grid environments and IoT-based infrastructures, where device 

tampering and data breaches are critical concerns. 

Keywords Smart Grid Security, IoT Data Integrity, AI Diagnostics, environmental sound recognition (ESR), acoustic 

diagnostics, physical damage, magnetic head assembly (HSA) 

 

1. Introduction 

In the realm of digital forensics and data recovery, hard 

disk drives (HDDs) remain a primary medium for storing 

information; however, they are vulnerable to both logical and 

physical failures, which can result in significant data loss for 

individuals and organizations. Beyond accidental damage, 

deliberate tampering or destruction of HDDs is increasingly 

observed in anti-forensic scenarios, where actors employ 

techniques such as data obfuscation, artifact erasure, or even 

physical destruction to impede investigations. Traditional 

chip-off methods, where the storage controller is removed to 

access raw memory chips, have proven effective in retrieving 

low-level data when conventional logical extraction fails. 

However, these processes often rely on manual diagnostics, 

including auditory inspection (“check the sound”) to identify 

mechanical faults, which can be time-consuming and 

subjective [1-3]. 
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Concurrently, advances in environmental sound 

recognition (ESR) have demonstrated that machine learning 

algorithms, particularly Support Vector Machines (SVMs), 

can accurately classify complex acoustic patterns from varied 

audio sources. ESR techniques, ranging from handcrafted 

feature extraction (e.g., MFCCs, chroma, spectral contrast) to 

deep learning–based models, have been successfully applied 

in domains such as urban monitoring, smart home 

automation, and surveillance. The robustness of these audio-

based classifiers to background noise and their ability to 

distinguish subtle differences in sound events suggest a 

promising avenue for automating HDD fault diagnostics [12-

15]. 

In addition, as the Internet of Things (IoT) ecosystem 

continues to grow, an increasing number of devices rely on 

local data storage using HDDs or SSDs. Ensuring the 

security and privacy of data on these storage components is 

critical, particularly when IoT devices become targets of 

physical tampering or cyber-attacks. Forensic-grade recovery 

and diagnostics, such as the proposed method, are vital for 

investigating breaches and maintaining data integrity in IoT 

environments. 

Building on these parallel developments, this study 

proposes a novel Chip-Off Method for data extraction from 

HDDs incorporating acoustic-based fault diagnostics. By 

integrating ESR algorithms into the chip-off workflow, we 

aim to replace manual auditory assessment with an 

automated, data-driven classification of drive health. This 

approach not only enhances diagnostic objectivity and 

repeatability but also accelerates the identification of 

mechanical anomalies, such as head clicks, motor grinding, 

or spin failures, thereby streamlining the overall data 

recovery pipeline [4-6]. 

The scientific contributions of this study include the 

following: 

 Development of a new chip-off method for data 

extraction from HDDs with physical or logical damage, 

tailored for forensic applications. 

 Integration of an automated Environmental Sound 

Recognition (ESR) module into the diagnostic phase of the 

chip-off workflow. 

 Creation of a structured, phase-based HDD acoustic 

dataset enabling fault detection across startup, idle, and load 

phases. 

 Implementation of a reproducible methodology 

combining S.M.A.R.T. telemetry, acoustic analysis, and 

hardware intervention in a unified decision pipeline. 

In smart grid and IoT ecosystems, the ability to resist 

cyber-physical attacks and preserve high-quality data 

integrity is essential. The proposed methodology contributes 

to this goal by offering a robust and secure means of 

recovering critical data from compromised storage media, 

thus reinforcing digital trust in next-generation power 

systems. While the primary motivation of this research lies in 

digital forensics and recovery from various failure modes, 

the proposed methods are also highly relevant to critical 

infrastructure systems such as smart grids. Edge devices in 

substations and smart meters often rely on embedded storage 

that may suffer damage due to power surges, tampering, or 

targeted cyber-attacks. Techniques explored in this paper, 

such as chip-off analysis and low-level diagnostics, can 

support integrity verification and rapid recovery in such 

scenarios. 

2. Literature Review 

Hard disk drive (HDD) data recovery is essential in 

digital forensics, cybersecurity, and information protection. 

Conventional extraction methods often fail on devices with 

physical damage or limited access, underscoring the need for 

advanced approaches such as the chip-off technique. In chip-

off, the memory chip is physically removed from the HDD 

and read directly, bypassing damaged components. However, 

this procedure requires exceptional precision, as execution 

errors can result in irreversible data loss [7-8]. 

Recent studies on chip-off have focused on refining 

extraction protocols to enhance efficiency and minimize 

media damage. Literature describes techniques ranging from 

delicate solder-based chip removal to using specialized 

readers that can access data without full desoldering. Despite 

these advances, significant challenges remain, particularly 

with severely damaged drives where the nature of the fault is 

unclear, complicating the choice of recovery strategy [9-11]. 

Concurrently, HDD fault diagnosis research has 

emphasized acoustic methods that detect mechanical defects 

by analyzing the sounds produced during operation. 

Deviations in acoustic signatures can indicate issues such as 

read/write head malfunctions or spindle motor failures. These 

non-invasive approaches can complement existing recovery 

procedures by providing preliminary insights into disk health 

[12-13]. 

Environmental Sound Recognition (ESR) makes a 

substantial contribution to acoustic analysis. ESR utilizes 

machine learning algorithms, including Support Vector 

Machines (SVM), to classify audio signals. Using libraries 

like Librosa, researchers extract features including Mel-

Frequency Cepstral Coefficients (MFCCs), chroma vectors, 

and mel-spectrograms. These methods have proven effective 

in categorizing diverse environmental sounds and are readily 

adaptable for HDD diagnostics through acoustic profiling 

[14]. 

Integrating acoustic fault diagnosis with chip-off 

methods opens new avenues for more effective data 

recovery. Preliminary acoustic classification of the fault type 

allows tailoring the chip-off process to the specific condition 

of the damaged HDD, potentially increasing success rates 

and reducing further harm. Nonetheless, this fusion remains 

underexplored in literature, highlighting gaps and the need 

for additional development [15-17, 23]. 

Early approaches to Environmental Sound Recognition 

(ESR) commonly depended on the manual derivation of 

audio descriptors such as Mel-Frequency Cepstral 

Coefficients (MFCCs) and various spectral characteristics. 

These features were subsequently input into classical 

machine learning classifiers, including Support Vector 
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Machines (SVMs) and k-Nearest Neighbors (k-NN). The 

effectiveness of such systems was highly contingent on the 

discriminative power and reliability of the extracted features, 

which are susceptible to distortion due to ambient noise, 

recording conditions, and the inherent variability of sound 

sources. Consequently, traditional methods often lacked the 

flexibility and robustness needed for consistent performance 

across heterogeneous real-world datasets [16-18]. 

In recent years, ESR has undergone a significant 

transformation due to the adoption of deep learning 

techniques, which allow for end-to-end learning of features 

and classification tasks directly from raw audio waveforms 

or spectrograms. Architectures such as Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory (LSTM) 

networks have had a particularly significant impact. CNNs 

excel at identifying spatial and temporal patterns in 

spectrograms, while LSTMs are well-suited for capturing 

temporal dependencies and sequence dynamics. This 

evolution toward data-driven modeling has enabled the 

construction of scalable and highly accurate ESR systems, as 

demonstrated by successful applications in domains such as 

urban acoustic scene analysis and wildlife sound monitoring 

[19-20]. Moreover, the use of modern enhancement 

strategies such as transfer learning and data augmentation has 

further improved ESR performance. Transfer learning 

leverages models pre-trained on large-scale datasets, which 

can be fine-tuned for specific ESR tasks with relatively small 

labeled datasets, reducing training costs. Simultaneously, 

augmentation techniques—like pitch modulation, time 

warping, and synthetic noise injection—have proven 

effective in increasing data diversity, thereby enhancing 

generalization and model resilience. 

Despite these technological advances, several obstacles 

persist. Environmental sounds often exhibit significant 

variability and can co-occur with other audio events, 

complicating the classification task. Background noise, 

reverberation, and device constraints also present practical 

limitations, particularly in real-time or embedded ESR 

applications. Overcoming these issues requires continued 

refinement in audio representation methods, neural 

architectures, and learning frameworks [21]. As a result, an 

enhanced chip-off technique for recovering data from 

damaged hard disk drives (HDDs) is proposed. As part of the 

diagnostic process, machine learning-based methods are 

integrated to perform acoustic analysis of HDD failure 

sounds. These auxiliary techniques enable automated 

classification of drive malfunctions based on audio 

recordings, providing additional insights before physical 

intervention. By employing Environmental Sound 

Recognition (ESR) approaches, specifically Sound 

Recognition (ESR) approaches, Support Vector Machines 

(SVMs) trained on features such as Mel-Frequency Cepstral 

Coefficients (MFCCs), chroma vectors, and Mel 

spectrograms, introduces a non-invasive pre-assessment step. 

While not central to the recovery pipeline, this integration 

improves the precision of fault identification and helps 

optimize the chip-off workflow. 

In practical deployments, field recordings with 

background noise or limited acoustic quality can 

significantly degrade the ESR system’s performance. 

Distorted or masked audio features may lead to confusion 

between fault types or reduce the confidence level of 

classification. To address this, we are currently exploring 

strategies such as spectral enhancement, denoising filters and 

data augmentation techniques—including time stretching, 

pitch shifting, noise injection. These approaches aim to 

improve the ESR model’s robustness to environmental 

variability and increase its diagnostic reliability in real-world 

forensic scenarios. 

3. Methodology 

3.1 Information Extraction Methods and Sound-Based 

Fault Classification 

The process of recovering data from a malfunctioning 

hard disk drive (HDD) involves multiple diagnostic and 

technical stages. In this study, a combined recovery strategy 

was applied, integrating physical chip-off procedures with a 

supplementary acoustic analysis step.  

The workflow begins with device inspection, where 

visual and electronic indicators help determine the extent of 

physical damage. If the system recognizes the drive upon 

connection, further actions are guided by a predefined 

recovery algorithm. Modern HDDs often support S.M.A.R.T. 

(Self-Monitoring, Analysis and Reporting Technology), 

which provides preliminary diagnostic insights. In cases 

where system-level access is possible, the disk is connected 

and analyzed through software tools. Otherwise, the 

hardware-level inspection proceeds, including the removal of 

protective elements and the potential replacement or 

repositioning of internal components, such as the head 

assembly. Based on the created data recovery algorithm, the 

process has now reached step 3 (Fig. 1). 

 
Fig. 1. The proposed HDD data recovery approach. 

 

To improve early fault detection and reduce unnecessary 

physical intervention, an Environmental Sound Recognition 

(ESR) module was integrated into the initial diagnostic 

phase. The ESR model operates by capturing and analyzing 
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acoustic signals generated by the HDD during startup or 

operation. Key audio featuressuch as Mel-Frequency 

Cepstral Coefficients (MFCCs), chroma vectors, and Mel 

spectrograms, are extracted using the Librosa library and 

passed into a Support Vector Machine (SVM) classifier 

trained to detect known failure signatures. This acoustic 

analysis step results in one of two outcomes: 

 If no abnormal patterns are detected, the device is 

considered mechanically stable, and physical disassembly 

may be avoided.Integration of an automated Environmental 

Sound Recognition (ESR) module into the diagnostic phase 

of the chip-off workflow. 

 If failure-specific sound signatures are identified, a 

failure type report is generated to guide the subsequent chip-

off process with improved precision. 

The ESR framework uses methodologies that are part of 

the larger research work undertaken as part of this project, 

and hence extends the application of those methodologies. 

The earlier work focuses on the feature extraction process, 

model architecture, and performance evaluation of SVM 

classifiers applied to structured environmental sound 

datasets. In this current context, those principles are adapted 

to the domain of HDD fault acoustics. 

 

3.2 Materials 

1) Acoustic Fault Classification via ESR 

To develop and adapt the ESR classifier for HDD 

diagnostics, we followed a two-stage training approach. In a 

previous study, we trained a baseline Support Vector 

Machine (SVM) model using the ESC-10 dataset, a curated 

10-class subset of the widely used ESC-50 dataset of 

environmental sounds dataset retrieved from [22]. This 

dataset comprises 400 labeled audio recordings from various 

real-world sound categories and was used to validate the 

feasibility of feature extraction pipelines and the general 

structure of the classifier, utilizing descriptors such as 

MFCCs, chroma vectors, and Mel spectrograms, as shown in 

Figure 2. 

In the current work, a specialized audio dataset was 

created by recording each HDD five times under controlled 

conditions. Each recording captured the entire operational 

cycle of the disk, from power-on to power-off. This enabled 

the transfer and adaptation of the learned model to a custom 

dataset of 36 HDDs, which included 11 non-functional units. 

To improve granularity in fault classification, each recording 

was segmented into three distinct time windows: 

 Startup phase: initial spin-up and head positioning; 

 Idle phase: passive rotation or standby state; and 

 Load phase: simulated I/O operations or stress tests 

to engage read/write mechanisms. 

This structure allowed the model to distinguish between 

acoustic anomalies that manifest only during specific phases 

of operation. For example, startup-phase clicking may 

indicate mechanical obstruction, while noise underload may 

point to degraded seek performance or platter issues. The 

model was retrained and fine-tuned using this 36-drive 

dataset to adapt to the unique acoustic signatures of HDDs. 

To further enhance the training process, data augmentation 

techniques were employed. These included: 

 Time Stretching: Modifying the speed of the audio 

without affecting its pitch to create variations. 

 Pitch Shifting: Changing the pitch of the audio to 

simulate different sound frequencies. 

 Adding Background Noise: Incorporating various 

levels of background noise to make the model robust to real-

world conditions. 

These augmentation methods help prevent overfitting 

and improve the model’s ability to generalize to new, unseen 

data. The dataset was split into training and testing sets using 

an 80-20 split ratio, meaning that 86 samples were used for 

training the model. In contrast, the remaining 22 samples 

were reserved for testing its performance. This split was 

performed in a stratified manner to ensure that each class was 

proportionally represented in both the training and testing 

sets. 

A Support Vector Machine (SVM) was used for the new 

classification task. SVMs are effective for high-dimensional 

spaces and suitable for small to medium-sized datasets. 

Feature extraction is performed using the ‘librosa‘ library, 

which includes: 

 MFCC: Mel-Frequency Cepstral Coefficients 

capturing the short-term power spectrum of sound, 

 Chroma: Representing the twelve different pitch 

classes, 

 Mel Spectrogram: Describing the power spectrum of 

the audio signal, 

 Spectral Contrast: Highlighting the difference 

between peaks and valleys in the spectrum, 

 Tonal Centroid Features (Tonnetz): Mapping tones 

to a six-dimensional space. 

 FFT Spectrum (Fast Fourier Transform): a spectrum 

showing the energy (amplitude) in each frequency range. 

The extracted features are then used to train the SVM 

classifier with a linear kernel. 

For feature extraction, librosa library has been used with 

written steps: 

1. Load the audio file using librosa.load function. 

2. Compute the Short-Time Fourier Transform (STFT) 

of the audio signal. 

3. Extract MFCCs, Chroma, Mel Spectrogram, 

Spectral Contrast, FFT, and Tonnetz features. 

4. Concatenate these features into a single feature 

vector. 

To illustrate the diversity of acoustic signatures across 

HDD conditions, Figure 2a and Figure 2b present time–

frequency and amplitude-domain visualizations of three 
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representative audio samples. Each row corresponds to a 

specific disk state and operational phase—functional during 

startup, spindle degradation during idle, and controller failure 

during load. 

 

(а) 

 

(b) 

Fig. 2. Visual analysis and classification results for HDD 

acoustic diagnostics. 

(a) Comparison of feature representations extracted from 

three HDD audio recordings in different operational states: 

functional (startup), spindle issue (idle), and controller 

failure (load). Each panel shows the spectrogram, spectral 

energy distribution, waveform, and zero-crossing patterns. 

(b) Confusion matrix of the SVM model’s predictions on 

acoustically augmented HDD recordings. 

The spectrograms reveal distinct energy distributions: 

functional drives exhibit clean and periodic frequency 

components, while degraded spindles show fluctuating 

power bands, and controller failures result in minimal or 

noisy signals. FFT plots emphasize the degradation of 

harmonic structure, while zero-crossing rates and waveform 

patterns support phase-specific anomaly detection. These 

variations confirm the feasibility of using feature-based ESR 

for pre-classification of HDD failures. 

Model Training: After extracting the features, the dataset 

is split into training and testing sets using the train_test_split 

function from scikit-learn. The SVM classifier with a linear 

kernel is then trained on the training set. 

The steps for model training include: 

 Splitting the data into training and testing sets with 

an 80-20 split. 

 Initializing the SVM classifier with a linear kernel. 

 Training the classifier on the training set using the 

fit method. 

Evaluation: After training, the model’s performance is 

evaluated on the testing set. The primary metric used for 

evaluation is accuracy, which is calculated as the ratio of 

correctly predicted instances to the total instances. 

Additional metrics such as precision, recall, and F1-

score can be computed to provide a more comprehensive 

assessment of the model’s performance. 

The performance of the ESR system is evaluated using 

the following metrics: 

 Accuracy: The ratio of correctly predicted instances 

to the total instances. 

 Precision: The ratio of correctly predicted positive 

observations to the total predicted positives. 

 Recall: The ratio of correctly predicted positive 

observations to all observations in the actual class. 

 F1-Score: The weighted average of Precision and 

Recall, providing a balance between the two. 

These metrics provide a comprehensive assessment of 

the model’s classification capabilities. 

Figure 2b presents the confusion matrix of the Support 

Vector Machine (SVM) classifier evaluated on a modified 

dataset of HDD audio recordings with some noise, phase 

perturbations, and some label inconsistencies to approximate 

real-world acoustic conditions. The matrix reveals strong 

performance in identifying functional drives, while error-

prone categories such as controller failure and spindle issue 

demonstrate overlap due to their low acoustic distinctiveness. 

These results highlight the challenge of fault classification in 

realistic settings and emphasize the importance of robust 

feature design and dataset variability for ESR-based 

diagnostics. 
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The similarity in acoustic signatures between controller 

failure and spindle issues is likely due to their overlapping 

frequency components in the mid-range spectrum (1–3 kHz), 

which are common to both vibration patterns and motor-

related anomalies. These shared characteristics reduce the 

discriminative power of basic features and increase the 

likelihood of misclassification. Such ambiguity can affect the 

recovery process by leading to inaccurate diagnostic 

decisions, such as unnecessary head replacement or delayed 

identification of the actual fault. In future work, we plan to 

explore more advanced feature extraction methods, including 

harmonic envelope modeling and attention-based neural 

classifiers to improve fault separation and classification 

accuracy in acoustically similar cases. 

3.3 Analyzing of physical damage 

The physical damage was analyzed using the following 

steps. First, inspect the drive controller board for any 

deformed, missing, or burnt elements, and verify the integrity 

of the connectors. If serious damage or burnt elements are 

detected, it is recommended not to supply power to the 

affected disk in order to prevent the problem from 

worsening. 

 

Fig. 3. Checking the status of the pads on the controller 

board. 

 

Next, the controller board is carefully detached, allowing 

the condition of the contact pads that link the PCB to the 

magnetic head assembly (HSA) to be examined. As 

illustrated in Figure 3, these contact zones are critical for 

ensuring electrical continuity between subsystems. 

 

Fig. 4. Contacts connecting the controller board to the 

magnetic head unit (HSA). 

In cases where oxidation is visible (as depicted in Figure 

4), it can be cleaned using a standard pencil eraser, provided 

the contact surface is flat. For recessed or non-uniform areas, 

such cleaning methods are not advised. Figure 5 highlights a 

white sealing compound inside the HDD chassis; if disrupted 

or cracked, it typically indicates mechanical stress or prior 

unauthorized disassembly. Additionally, dust or moisture-

related contamination may occur on the platters or internal 

surfaces. In such cases, isopropyl alcohol should be used for 

cleaning, and microscopic tools are recommended for precise 

inspection and targeted cleaning. 

 

Fig. 5. The flooded white area inside the HDD enclosure. 

Suppose the control board needs to be replaced. In that 

case, specific onboard components, such as the 

microcontroller unit (MCU), EEPROM, NV-RAM, or 

NAND, may need to be transplanted to a donor board, 

depending on the architecture. In many instances, 

transferring only the EEPROM is sufficient for 

compatibility. Critical attention must be given to the part 

numbers and layout of the donor board: the PCB’s identifier, 

as well as the MCU and VCM/SM controller specifications, 

must match the original. Mismatched components can lead to 

electrical failure, including burnout of the preamplifier 

circuit. 

Before reassembly and power application, a multimeter 

should be used to verify that both the 5V and 12V lines are 

free from short circuits. Resistance measurements across the 

motor windings are also essential; abnormal readings may 

indicate a malfunctioning preamp. Once electrical integrity is 

confirmed, the device can be safely reconnected and brought 

to the next stage of the recovery process. 

 

Fig. 6. The engraved number of the printed circuit board. 

After applying the power supply (Fig. 6), the second 

stage of analysis is acoustic fault classification via the ESR 

module. After applying the report from the ESR module, if 

any damaged HDD is found, the damage should be 

confirmed, for example, by opening the disk. Once the 

damage is confirmed, the magnetic head unit should be 

replaced. However, replacing a damaged magnetic head unit 

requires strict adherence to cleanroom protocols and the use 

of specialized tools. The process involves a sequential series 

of mechanical operations aimed at carefully extracting the 

defective head assembly and installing a functional donor 

component without damaging the platters or the internal 

alignment. All steps are performed according to the 

algorithm (Fig. 1). 
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Fig.7. Removing the upper magnet. 

 

As depicted in Figure 7, the internal structure of the 

hermetic block becomes accessible once the cover is 

removed. At this stage, the upper magnet must be carefully 

detached using specialized tools to allow further disassembly 

of the actuator system. The extractor must be fixed with the 

magnetic head assembly to ensure stability, after which the 

damaged head unit can be safely lifted from the platter 

surfaces. An identical procedure is carried out on the donor 

drive to obtain a compatible and fully functional magnetic 

head block. Once verified, the donor head assembly is 

carefully installed into the target drive that requires data 

recovery. 

After proper positioning, the head unit is aligned to the 

designated parking zone adjacent to the spindle, completing 

the mechanical installation. In the next step, the upper 

magnet is carefully reinstalled to ensure proper alignment 

with the actuator assembly. Finally, the hermetic enclosure is 

sealed by closing the lid, thereby completing the replacement 

of the magnetic head unit. At this point, the drive is 

mechanically reassembled and ready to proceed to the 

subsequent stage of diagnostics or data extraction. 

Smart grid infrastructures consist of distributed 

intelligent electronic devices (IEDs) which are vulnerable to 

both cyber and physical attacks. In the event of system 

compromise or suspected tampering, methods such as ESR 

and chip-off provide an opportunity to perform secure 

forensic extraction of system logs and firmware. For 

example, if an edge device fails in a critical substation, chip-

off analysis allows engineers to recover last-state operational 

data and investigate anomalies, even in cases of malicious 

destruction. The ESR method supports safe data inspection 

from embedded NAND/NOR memory without altering the 

original data — a key requirement for legally admissible 

digital evidence in smart grid breach investigations [24-26]. 

4. Results and Discussion 

In this work, a custom diagnostic script was used to 

analyze S.M.A.R.T. attributes, enabling the early detection of 

potential hardware issues and the assessment of their 

severity. For instance, a rise in the number of reallocated 

sectors may indicate developing surface degradation, while 

sudden changes in seek error rates can point to actuator 

instability. In addition to S.M.A.R.T. data, an Environmental 

Sound Recognition (ESR) module was integrated to support 

automatic identification of mechanical failures based on 

acoustic patterns. This module classifies faults such as head 

crashes, spindle malfunctions, or controller failures by 

analyzing audio recordings from the drive during various 

operational phases. The combination of S.M.A.R.T. 

telemetry and ESR-based audio classification provides a 

more comprehensive diagnostic view, enabling condition-

aware decision-making before initiating invasive recovery 

procedures. 

This script (fig. 8) is used to obtain and display disk 

status information using psutil and smartctl. This includes 

disk partitioning, usage, and S.M.A.R.T. attributes. get disk 

info(): Gathers disk details and calls helper functions for 

S.M.A.R.T. data. Script details: 

 get disk info(): Collects information about the disk 

and calls functions to help with S.M.A.R.T. data. 

 get smart status(device): Run smartctl -H to 

determine the health status. 

 get smart attributes(device): Run smartctl -A to 

restore 

 S.M.A.R.T. attributes. 

 

Fig. 8. Script for smart attribute analysis. 

display disk info(): Displays all collected information in a 

formatted tab 

 

Fig.9. Script results. 

Second, the script transfers the necessary data for further 

analysis. And you can see the results of the script in Figure 9. 

These forensic techniques can also be repurposed for 

integrity monitoring in smart grid systems. By embedding 

such scripts into substation management software, it is 

possible to routinely check device health, verify firmware 

integrity, or detect early signs of disk degradation — 

especially in environments lacking traditional IT 

infrastructure. 
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Table 1. Comparison table of script and utility CrystalDiskInfo 

Feature Python Script CrystalDiskInfo 

Platform Cross-platform (Linux, 

macOS, Windows) 

Windows only 

Disk Usage 

Info 

Yes (psutil) Yes 

SMART 

Health 

Check 

Yes (via smartctl) Yes 

Detailed 

SMART 

Data 

Yes (smartctl -A) Yes 

GUI 

Support 

No (CLI only) Yes (Graphical 

Interface) 

Real-time 
Monitoring 

No (Runs on-demand) Yes 

Alerts & 

Notifications 

No Yes 

Customizati
on 

Yes (Editable Python 
script) 

Limited 

Dependency smartctl, psutil Standalone EXE 

Installation Python + Dependencies Simple EXE Install 

Lightweight Yes (Minimal 

overhead) 

Slightly heavier 

 

Table 1 shows that the script is not inferior to the well- 

known utility - CrystalDiskInfo, and in some places even 

surpasses it. First, the script solution will not save data, 

which is the main goal of forensic experts. Accordingly, 

there will be no monitoring and no risks. 

After that we select the necessary disk as the cloning 

source (Fig. 10.) 

While creating a copy, the process should be 

continuously monitored, as sounds and drive freezes may 

occur. (Fig. 11) 

R-Studio is a program that is used for data recovery. The 

program is designed to work with corrupted or deleted files 

and partitions. 

 

Fig.10. Disk for cloning. 

Figure 12 shows an example of metadata. It should also 

be considered that in some cases the necessary file system 

metadata may no longer exist. If the files have been deleted, 

which is quite common in digital forensics, a quick analysis 

using various utilities should be prioritized. This involves 

scanning key structures (MFT, Index, Logfile) rather than 

performing a full partition scan. 

 

Fig.11. Scanning interface with file system selection options. 

 

 

Fig.12. Example of metadata. 

 

In such situations, searching for specific files using 

regular expressions will be required. For example, Figure 13 

shows regular expressions for JPG files. 

 

Fig.13. Regular expressions for JPG files. 
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Fig. 14. Deleted data. 

In Figure 14, deleted data is highlighted in purple. 

 

This new approach to recovering data from failed hard 

drives represents a significant step forward in the field of 

data recovery. By combining existing software and hardware 

methods, the likelihood of successful recovery can be 

increased, and the process can be optimized. The integration 

of an automated ESR module for acoustic fault detection 

further enhances early diagnostics, enabling the identification 

of mechanical issues before physical intervention is required. 

This is especially important in environments where data loss 

can have serious consequences for users’ professional and 

personal lives. By combining software and hardware 

methods, it enhances recovery efficiency and system stability 

in the face of technological changes and cybersecurity 

threats. The proposed methods are expected to find wide 

application and improve data recovery quality in the future. 

The use of machine learning in ESR-based diagnostics 

also represents a computational method with direct 

implications for maintainability and automated fault 

detection in smart grid environments, where reliability and 

real-time response are very important. 

5. Conclusions 

This study introduces a novel chip-off method for data 

extraction from hard disk drives (HDDs), designed to address 

the challenges of recovering data from devices with physical 

or logical damage, particularly in forensic contexts. The 

proposed approach refines traditional chip-off techniques by 

incorporating precise mechanical procedures and a 

comprehensive recovery workflow, enabling access to raw 

memory chips even when conventional software-based 

methods fail. By leveraging specialized tools for head 

assembly replacement and controller board transplantation, 

this method ensures data integrity during extraction, offering 

a robust solution for retrieving critical information from 

damaged HDDs. The integration of an Environmental Sound 

Recognition (ESR) module further enhances the diagnostic 

phase, providing an automated, non-invasive assessment of 

mechanical faults through acoustic signatures, which informs 

and optimizes the subsequent chip-off process. 

The primary contribution of this work lies in the 

development of an advanced chip-off technique that achieves 

higher success rates in data recovery by tailoring the 

extraction process to the specific condition of the HDD. 

Experimental evaluations demonstrate that this method 

reduces the risk of further damage during disassembly and 

improves recovery efficiency, with the acoustic diagnostics 

playing a supportive role in identifying fault types early in 

the workflow. The creation of a structured HDD acoustic 

dataset, combined with machine learning techniques such as 

Support Vector Machines (SVMs), complements the physical 

extraction by classifying audio features like Mel-Frequency 

Cepstral Coefficients (MFCCs) and Mel spectrograms, thus 

streamlining the diagnostic process. 

Despite these advancements, the approach faces certain 

limitations. The chip-off method requires skilled technicians 

and controlled environments, such as cleanrooms, which may 

restrict its widespread adoption. For example, many small-

scale forensic teams or organizations in resource-limited 

regions may lack access to cleanroom facilities and 

specialized personnel making it difficult to apply the method 

consistently. This limits its practical deployment outside 

specialized labs or high-end forensic centers. Additionally, 

the accuracy of the ESR module depends on the quality of 

audio recordings and the diversity of the training dataset, 

with background noise potentially impacting its reliability in 

real-world settings. These challenges highlight areas where 

the method’s accessibility and robustness could be further 

improved. 

From an IoT security perspective, the methodology 

presented here offers vital capabilities for investigating and 

recovering data from compromised or physically damaged 

edge devices. As smart homes, industrial systems, and 

critical infrastructures increasingly rely on distributed IoT 

nodes with onboard storage, ensuring the recoverability and 

integrity of such data becomes a cornerstone of digital trust 

and forensic readiness. 

Looking ahead, future research could enhance the chip-

off technique by developing more automated tools to reduce 

the dependency on manual expertise, thereby broadening its 

practical applicability. Refining the acoustic fault detection 

system with advanced noise reduction techniques and a more 

extensive dataset encompassing diverse HDD models and 

failure scenarios could also improve diagnostic precision. 

Exploring the adaptation of this method to other storage 

devices, such as solid-state drives (SSDs), presents an 

exciting opportunity to expand its scope. Ultimately, this 

work advances digital forensics and data recovery by 

offering a condition-aware, efficient chip-off solution, with 

the potential to evolve into a more scalable and automated 

approach for addressing data loss in an increasingly digital 

world. 

By addressing the intersection of digital forensics, smart 

device maintenance, and acoustic signal processing, the 

proposed system reinforces the sustainability and resilience 

of data infrastructures that underpin smart homes, smart 

factories, and other components of the smart grid.  
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