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Abstract- Hybrid PV-Wind-Battery microgrids have emerged as sustainable solutions to meet growing energy demands while
reducing reliance on fossil fuels. However, managing energy flow efficiently among multiple renewable sources and storage
systems poses significant challenges due to the inherent variability of solar and wind power. This paper presents an advanced
energy management framework for hybrid microgrids using Markov Decision Processes (MDP). The proposed approach
optimizes energy distribution through stochastic decision-making based on real-time system states, such as power generation,
load demand, and battery state of charge (SOC). The MDP-based model aims to minimize operational costs, enhance energy
reliability, and maintain system stability by determining optimal actions for battery charging/discharging and energy source
prioritization. A comparative analysis with conventional methods demonstrates the MDP framework’s superiority in adapting
to dynamic conditions, reducing energy wastage, and maximizing renewable utilization. The proposed control strategy
introduces a Markov Decision Process (MDP)-based energy management framework that dynamically adapts to the stochastic
nature of renewable generation and load demand a distinct departure from traditional rule-based or deterministic approaches.
Unlike previous methods that rely on fixed thresholds or predefined heuristics, our MDP model leverages real-time system
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states to make probabilistically optimal decisions regarding battery usage and source prioritization. This integration of
stochastic optimization with hardware validation establishes a novel, scalable, and practical control solution for hybrid PV-
Wind-Battery microgrids, marking a significant advancement in intelligent energy management systems.

Keywords Hybrid microgrids, PV-wind-battery systems,

Markov decision processes (MDP), energy management

optimization, renewable energy utilization, system stability and reliability

1. Introduction

The increasing demand for sustainable energy solutions
has led to the rapid development of hybrid microgrids,
particularly those integrating photovoltaic (PV) solar, wind,
and battery storage systems. These hybrid systems leverage
renewable resources to provide reliable electricity while
reducing dependence on fossil fuels and minimizing
greenhouse gas emissions [1]. However, managing energy
flow in such complex systems presents significant challenges
due to the inherent variability in renewable energy generation
and fluctuating energy demands. Therefore, an effective
energy management strategy is essential for optimizing the
performance of hybrid PV-wind-battery microgrids. To
address these challenges, advanced energy management
frameworks are necessary to enhance the integration and
coordination of renewable energy sources and storage
devices [2]. Markov Decision Processes (MDPs) have
emerged as a powerful tool for developing optimal control
strategies in stochastic environments. By utilizing MDPs, it
is possible to model the uncertainties associated with
renewable energy generation and demand fluctuations,
allowing for the formulation of a decision-making process
that identifies optimal actions over time. This strategy allows
the dynamic management of energy resources and that the
production, storage, and consumption of energy are kept in
balance [3]. MDPs as a part of the energy management
system help to make operational cost and reliability of the
hybrid microgrids proactive in managing the hybrids. The
MDP-based model, takes into account all possible factors
such as battery state of charge (SOC), availability of
solar/wind energy resources and loads demands in order to
identify recently optimized approaches to battery charger and
discharge, as well as energy resource prioritization. This
decision-making process is crucial towards balancing the
system, and guaranteeing that the energy is accessible in the
right time and at the right place, especially when there is low
renewable energy [4]. The efficiency of MDP based energy
management strategies is feasible by open use applications.
By coming up with a prototype of a hardware method that
would include solar panels, wind turbines, and even lithium-
ion batteries, researchers will be able to test the management
strategies that have been proposed in practical contexts.
Experimental results from such prototypes can provide
insights into the performance of the MDP framework,
showcasing its ability to minimize operational costs,
maximize renewable energy utilization, and improve overall
system reliability [5]. The integration of Markov Decision
Processes into the energy management of hybrid PV-wind-
battery microgrids represents a promising advancement in
the field of renewable energy systems [6]. By addressing the
inherent challenges of variability in generation and demand,

the proposed framework not only enhances the efficiency and
stability of hybrid microgrids but also contributes to the
broader goal of developing resilient and sustainable energy
systems. This paper will explore the implementation of
MDPs in optimizing energy management strategies, analyze
the performance of these strategies through simulation and
experimental validation, and discuss the implications for
future research and development in hybrid microgrid systems
[7]. At its core, the microgrid consists of renewable energy
sources that generate electricity from solar and wind, which
is then fed into a common bus. This bus serves as the central
point for distributing power to various loads and managing
energy storage through battery systems, ensuring reliable
energy supply even during periods of low renewable
generation [8]. The energy flow within the microgrid is
governed by advanced control mechanisms that dynamically
adjust the operational parameters based on real-time data. To
reinforce the practical relevance of this research, it is
important to emphasize that the proposed MDP-based energy
management  strategy  directly addresses  real-world
challenges associated with the integration of intermittent
renewable sources such as solar and wind power [9]. By
combining optimization techniques with probabilistic
decision-making, this framework enables adaptive control of
energy flows in hybrid microgrids, ensuring efficient use of
resources under uncertain conditions [10]. Such an approach
is particularly valuable for remote and grid-constrained areas,
where energy reliability and cost-efficiency are critical. The
practical applicability of the model is further supported by its
compatibility with hardware implementation and its potential
to reduce operational costs, enhance energy autonomy, and
support the scalability of decentralized energy systems [11].
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Fig. 1. Microgrid model.
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Figure 1 illustrates the architecture of a hybrid microgrid
model that integrates photovoltaic (PV) systems, wind
turbines, and battery storage to create a cohesive and
efficient energy management system [12]. The model is
designed to operate autonomously while being connected to
the main grid, allowing for seamless energy exchange based
on demand and supply dynamics. The integration of battery
storage systems plays a crucial role in managing fluctuations
in energy generation and consumption. When the renewable
energy output exceeds the demand, excess energy is directed
to charge the batteries, allowing for the storage of surplus
energy for later use [13]. Conversely, during periods of high
demand or low generation, the stored energy can be
discharged to meet the load requirements. This bidirectional
flow of energy ensures that the microgrid can maintain
balance and stability, optimizing the use of available
resources [14]. The microgrid model also incorporates
Markov Decision Processes (MDPs) to enhance the decision-
making framework for energy management. MDPs allow for
the evaluation of various states of the system, including the
state of charge of the batteries, current load demands, and the
availability of solar and wind resources. By modeling these
stochastic processes, the microgrid can determine optimal
strategies for energy distribution, battery operation, and
source prioritization [15]. The adaptive nature of MDPs
ensures that the microgrid can respond effectively to
changing conditions, improving operational efficiency,
reducing costs, and maximizing the utilization of renewable
energy sources while maintaining system reliability. This
holistic approach positions the microgrid as a resilient and
efficient energy solution for modern energy needs [16]. To
enhance accessibility for readers from diverse academic
backgrounds, this study includes brief explanations of key
methodologies employed in the proposed energy
management framework. Specifically, Markov Decision
Process (MDP) is introduced as a stochastic decision-making
tool used to determine optimal actions based on system states
and transition probabilities [17]. Dynamic Programming is
described as the mathematical foundation enabling backward
induction to solve the MDP, while Monte Carlo Simulation
is referenced in the context of uncertainty modeling and
probabilistic forecasting. These clarifications aim to improve
the readability of the manuscript and provide essential
context for the applied techniques [18]. The integration of
renewable energy sources into microgrids has necessitated
the development of advanced forecasting and simulation
tools to address variability and uncertainty. Genikomsakis et
al. (2017) developed a simulation model for a wind-battery
microgrid using short-term wind forecasting, demonstrating
enhanced system efficiency and better battery charge-
discharge scheduling. Cabrera-Tobar et al. (2022) provided a
comprehensive review of optimization and control methods
under uncertainty, highlighting the relevance of probabilistic

and adaptive techniques for real-time decision-making.
Similarly, Sarda et al. (2022) employed an optimization-
based energy management strategy using linear
programming, resulting in minimized operational costs and
improved grid stability. AlKassem et al. (2022) focused on
optimal design and energy integration at a university campus,
confirming that hybrid systems with PV, wind, and battery
units significantly reduce environmental impact and grid
dependence. Control methodologies in microgrids have
evolved from heuristic-based to more intelligent and
forecast-driven frameworks. Almada et al. (2016) proposed a
centralized heuristic EMS for AC microgrids, showing
acceptable performance under standard conditions but
limited adaptability to dynamic load variations. To address
this, Alvarez et al. (2017) modeled a PV-battery grid-
connected system integrated with a Maximum Power Point
Tracking (MPPT) controller, enhancing energy capture from
solar inputs. Meanwhile, Arcos-Aviles et al. (2017)
introduced a low-complexity strategy that utilized demand
and generation forecasting for grid smoothing, offering a
practical solution for residential applications where
computational resources are constrained. These works
collectively emphasize the role of forecast integration and
model simplification in enabling scalable microgrid control.
Recent research trends indicate a shift toward incorporating
machine learning and artificial intelligence into microgrid
optimization. Studies such as Alahmad and Braun (2022),
Radhakrishnan and Braun (2023), and Mohamed and El-
Mashad (2023) reviewed emerging Al-driven EMS
frameworks, underlining their potential for improved
flexibility, prediction accuracy, and adaptive control. Liu et
al. (2018) addressed coordinated control in hybrid storage
systems, while Gupta and Singh (2019) and Singh and Sinha
(2019) explored the role of TCSC-based voltage regulation.
Others, including Khushal and Li (2023) and Hernandez and
Rodriguez (2023), investigated machine learning techniques
for voltage stability and microgrid protection. Collectively,
these studies reflect a growing consensus on the necessity of
intelligent, resilient, and computationally efficient control
systems for hybrid renewable-based microgrids [19].

2. Photovoltaic Model

The photovoltaic (PV) model is designed to convert solar
energy into electrical energy through the use of solar panels
made up of semiconductor materials, primarily silicon [20].
The basic unit of a PV system is a solar cell, which generates
direct current (DC) electricity when exposed to sunlight. In a
typical design, multiple solar cells are interconnected to form
a solar module, and several modules are combined to create a
solar array [21]. The PV system is usually mounted on a
structure that optimizes its exposure to sunlight, which can
be fixed or equipped with tracking systems to follow the
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sun’s path throughout the day. This design maximizes energy
capture, ensuring efficient performance under varying
atmospheric conditions. The operation of the PV model is
governed by several factors, including irradiance,
temperature, and the characteristics of the solar cells. When
sunlight strikes the solar cells, it excites electrons, creating
an electric current [22]. The amount of power generated is
proportional to the solar irradiance and the temperature of the
cells. A maximum power point tracking (MPPT) algorithm is
often implemented in the system's control unit to
continuously adjust the electrical operating point of the
modules to maximize energy output. This control system
monitors the real-time performance of the solar array,
ensuring optimal energy production while adapting to
changing environmental conditions [23]. The control system
regulates the integration of the PV output with other energy
sources in the microgrid, such as wind and battery systems.
Protection systems are crucial for ensuring the safe and
reliable operation of the PV model [24]. The protective
measures include overcurrent protection, surge protection,
and isolation devices to prevent damage from electrical faults
or external disturbances. Circuit breakers and fuses are
employed to safeguard the system from short circuits and
overloads [25]. Furthermore, the design includes monitoring
systems that provide real-time data on the performance and
health of the PV modules, enabling proactive maintenance
and fault detection. The current-voltage (I-V) curves of the
PV modules are essential in understanding their performance
characteristics, illustrating how the output current varies with
the voltage at different levels of irradiance and temperature.
These curves help in assessing the efficiency of the solar
panels, guiding the optimization of the PV system's operation
and integration within the microgrid [26].

Photocourant Diode Utilisateur
Q) e H '

Fig. 2. Single diode model.

Figure 2 illustrates the single diode model, a widely used
representation of a photovoltaic (PV) cell that captures its
electrical characteristics. This model simplifies the complex
behaviour of solar cells into a manageable format by
incorporating a diode, a current source, and several resistive
components [27]. The diode in the model represents the p-n
junction of the solar cell, which allows current to flow in one
direction, thus mimicking the behaviour of real-world PV
cells. The model includes a photocurrent source, denoted as
Ion, Which generates current proportional to the incident solar

irradiance, and a reverse saturation current, lo, that accounts
for the leakage current through the diode when it is reverse-
biased [28]. In operation, the single diode model
demonstrates how the output current (1) and voltage (V) of
the solar cell are affected by varying levels of solar
irradiance and temperature. Under sunlight, the photocurrent
(lpn) generated increases, while the diode's forward voltage
drops and resistive losses influence the overall output [29].
The model includes two resistors: Rs (series resistance),
which represents internal losses within the cell, and R,
(parallel resistance), which accounts for leakage current and
contributes to the cell's efficiency. The interplay of these
elements defines the current-voltage (I-V) characteristics of
the solar cell, allowing for the analysis of its performance
under different conditions [30]. Taking only one model of
solar cell; this will be designed by taking two resistors, one
current source and a diode. Above solar cell model can be
called as a single diode model. The characteristic equation of
the following PV cell is given below [31].

V+IxRs V+IxRs
I =T —los [exp [q X AxKxT} —1 ] ~ Rsh @
Where,
T 11
— . 233 Tr T
los =Tor x (7)* x [exp {q x Ego X AxK}] )
lg = {lser + Ki X (T-25)} X lambda 3)

The characteristic equation depends upon the connection of
solar module. That is total no. of cells connected in series
and parallel. Current variation in the solar module due to
shunt resistance is less and due to the series resistance is
more.

Np + Ilg X los %

Y tix2s
exp{qx =—TBL 1|~
AxKxT
Np
VxNS+I><Rs
Rsh

(4)

When photons of light strike a solar cell, they release free
electrons from the cell's upper layer. By using the threshold
energy formula, the appropriate light intensity can be
determined [32].

3. Wind Turbine Model

The design of a wind turbine model focuses on
converting kinetic energy from wind into mechanical energy,
which is then transformed into electrical energy [33]. A
typical wind turbine consists of three main components: the
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rotor blades, the nacelle, and the tower. The rotor blades are
aerodynamically designed to capture wind energy
effectively; their shape and length significantly influence the
turbine's efficiency and energy output. The nacelle houses
the turbine's generator, gearbox, and control systems, while
the tower elevates the rotor to a height that maximizes
exposure to wind. The height and design of the tower are
crucial, as wind speed increases with elevation above ground
level, enhancing energy capture [34]. The operation of the
wind turbine model is driven by the principles of
aerodynamics. As the wind passes over the rotor blades, lift
and drag forces are generated, causing the rotor to spin. This
mechanical motion is transmitted to the generator through a
gearbox, which converts the rotational speed into electrical
energy [35]. The electrical output varies with wind speed;
therefore, the turbine must operate across a range of speeds
to optimize energy production. The model typically includes
a cut-in speed (the minimum wind speed required to start
generating power), a rated speed (the wind speed at which
maximum output is achieved), and a cut-out speed (the
maximum wind speed beyond which the turbine is shut down
to prevent damage) [36]. The yaw control system assumes
the position of the turbine rotor into the direction of the wind
S0 as to increase power generation. This system has yaw
motors and controllers which move the turbine nacelle
relative to wind variations. This information is vital and
enables the control system of the DFIG to control the
important parameter measurements, i.e. wind speed, rotor
speed, grid voltage and frequency, upon which to optimize
the operations of the turbine, i.e. pitch adjustment and power
output regulation. DFIG-based wind turbine has helped in
renewable energy sector due to its ability of variable speed
operation and smooth integration in the grid, making it
flexible and reliable sources of energy [37].
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Fig. 3. Wind energy conversion system.

The Wind Energy Conversion System (WECS) depicted
in Figure 3 is designed to efficiently harness wind energy for
electricity generation. At the core of this system is the wind
turbine, which comprises rotor blades that capture wind
kinetic energy, converting it into mechanical energy as they
rotate [38]. This mechanical energy is transmitted to the
Doubly-Fed Induction Generator (DFIG) housed in the
turbine's nacelle, where the rotor assembly, connected via

slip rings, allows for bidirectional power flow. The DFIG's
stator is directly connected to the electrical grid, while the
rotor manages Vvariable speed operation through a
sophisticated power converter system. The power converter
includes the Rotor-Side Converter (RSC), which regulates
the rotor current, and the Grid-Side Converter (GSC), which
controls the power output to the grid, ensuring compliance
with grid stability requirements [39].

4, Battery Storage System

A battery storage system (BSS) in a microgrid is
designed to store excess energy generated from renewable
sources, such as solar panels and wind turbines, and provide
power during periods of low generation or high demand. The
system typically consists of battery modules, a battery
management system (BMS), power converters, and an
energy management system (EMS) [40]. The battery
modules, which can include lithium-ion, lead-acid, or other
chemistries, are configured in a manner that maximizes
energy capacity and efficiency while ensuring safety and
longevity. The BMS monitors individual battery cells,
managing their state of charge (SOC), temperature, and
health to optimize performance and prevent issues such as
overcharging or deep discharging. The operation of the BSS
is governed by the EMS, which integrates with the
microgrid's overall energy management framework. The
EMS determines when to charge or discharge the batteries
based on real-time data from the microgrid, including
renewable generation forecasts, load demands, and grid
conditions [41]. For instance, during periods of high
renewable generation, the EMS may direct surplus energy to
charge the batteries. Conversely, during high demand or low
generation, the system can discharge stored energy to meet
the load. The BMS plays a critical role in controlling the
charging and discharging processes, ensuring that the
batteries operate within safe parameters and maintain optimal
SOC levels for longevity [42].
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Figure 4 provides a visual representation of various
energy storage technologies, highlighting their unique
characteristics, advantages, and limitations. This figure
categorizes storage solutions into several types, such as
batteries (including lithium-ion and lead-acid), flywheels,
pumped hydro storage, compressed air energy storage
(CAES), and thermal energy storage. Each storage method is
evaluated based on key parameters such as energy density,
efficiency, cost, scalability, and response time, illustrating
their suitability for different applications in microgrids and
renewable energy systems. By comparing these technologies,
the figure underscores the importance of selecting
appropriate  energy storage solutions to optimize
performance, enhance reliability, and support the integration
of variable renewable energy sources into the grid. This
analysis aids stakeholders in making informed decisions
regarding energy management strategies in hybrid microgrid
systems [43].
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Fig. 5. Simulink battery model.

The MATLAB battery model illustrated in Figure 5
represents a comprehensive simulation of a Battery Energy
Storage System (BESS) designed for integration into
microgrid applications. This model utilizes Simulink to
simulate the dynamic behavior of the battery, capturing
essential parameters such as state of charge (SOC), voltage
response, and discharge characteristics. The code generated
in the model enables real-time input into the microgrid,
facilitating the management of energy flow between the
battery and other components within the system. By
modeling the battery's performance under various operating
conditions, this simulation allows for the optimization of
energy storage and retrieval processes, enhancing the
reliability and efficiency of the microgrid [44]. The insights
gained from this model are critical for developing effective
energy management strategies that leverage the capabilities
of BESS in supporting renewable energy integration and
ensuring grid stability SOC is a key metric in the operation
of a battery storage system, indicating the current energy
level relative to its total capacity. In microgrid applications,
SOC is monitored continuously to inform the EMS about the
available energy for discharge and the required energy for
charging. For example, when the SOC falls below a
predefined threshold, the EMS may initiate charging from
renewable sources or the grid to ensure that adequate energy

is available for future demands. On the other hand, if the
SOC reaches a high level, the EMS might limit charging to
prevent overcharging and enable energy dispatch to the grid
or local loads. By effectively managing SOC, the battery
storage system enhances the resilience and efficiency of
microgrids, allowing for a stable energy supply while
maximizing the utilization of renewable resources.

5. State of Charge of Battery System

The State of Charge (SoC) of a battery in a microgrid
represents the amount of energy stored in the battery relative
to its total capacity. It is often expressed as a percentage,
ranging from 0% (fully discharged) to 100% (fully charged)
[22]. The SoC of a battery can be mathematically expressed
using the following formula:

S0C = EstoredEtotal X 100% SoC = EgotalEstored X 100%  (5)

Where: SoC is the State of Charge of the battery (in
percentage). Estwored IS the energy stored in the battery (in watt-
hours or kilowatt-hours). Eta is the total energy capacity of
the battery (in watt-hours or kilowatt-hours).

Alternatively, if you have the battery's current and voltage
information, you can use the following formula to calculate
SoC:

SoC = [{I(t)-V(t) dt / C} x100% (6)

Where: I(t) is the battery current at time tt (in amperes). V(t)
is the battery voltage at time tt (in volts). C is the rated
capacity of the battery (in ampere-hours). This formula
integrates the product of current and voltage over time to
calculate the total energy transferred into or out of the
battery, relative to its rated capacity [45]. Both of these
expressions provide a mathematical representation of the
State of Charge of a battery in a microgrid, allowing the
monitor and manage its energy storage capabilities
effectively [48]. The effective energy management involves
coordinating the operation of various energy resources,
including renewable sources and battery storage. The energy
management system (EMS) uses algorithms to optimize
energy distribution based on real-time data, forecasted
demand, and generation capabilities. The integration of the
battery storage system with renewable energy sources, such
as solar and wind, is crucial for enhancing the reliability of
microgrids [49]. By employing SOC monitoring, the EMS
can determine when to store excess energy generated from
renewables and when to discharge the battery to meet peak
load demands. For instance, when solar generation exceeds
demand during the day, the surplus energy can be used to
charge the battery. The algorithm can be expressed as:
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Pba_ttery = Psolar - Hoad if Psola_r > Hoad

()

Conversely, during periods of low renewable generation
or high demand, the battery can discharge to support the grid.
This bi-directional energy flow enhances the microgrid's
ability to utilize renewable energy effectively and improves
overall system resilience. Despite the advantages, managing
SOC and integrating battery storage in microgrids presents
challenges, including unpredictable energy generation from
renewables and the need for sophisticated control strategies
[46]. Future developments may focus on advanced machine
learning algorithms to enhance predictive capabilities and
adaptive control strategies that can respond to real-time
changes in weather and demand patterns. Additionally,
research into new battery technologies, such as solid-state
batteries, could further improve efficiency and lifespan,
contributing to more robust and sustainable microgrid
systems [50].

6. Markov Decision Processes

Markov  Decision Processes (MDPs) provide a
mathematical framework for modeling decision-making in
situations where outcomes are partly random and partly
under the control of a decision-maker shown in figure 6. In
the context of energy management in hybrid microgrids,
particularly those integrating photovoltaic (PV), wind, and
battery energy storage systems (BESS), MDPs enable the
optimization of energy flow among these components. By
defining the states, actions, and rewards associated with
various energy management decisions, MDPs help in
developing strategies that minimize operational costs while
maximizing energy efficiency and reliability. The stochastic
nature of renewable energy generation makes MDPs
particularly suitable for capturing the uncertainties associated
with solar and wind power outputs, allowing for robust
decision-making in real-time. The design of an MDP for a
PV-wind-BESS microgrid involves defining several critical
components: states, actions, transition probabilities, and
rewards. States represent the current conditions of the
microgrid, including the state of charge (SOC) of the battery,
current load demand, and generation levels from solar and
wind sources. Actions are the possible decisions that can be
made, such as charging or discharging the battery,
prioritizing energy sources, or adjusting load profiles.
Transition probabilities describe the likelihood of moving
from one state to another given a particular action, capturing
the uncertainty inherent in renewable energy generation.
Finally, rewards quantify the benefits of taking specific
actions in particular states, such as cost savings from reduced
energy purchases or penalties from failing to meet load
demand.

A 4

Environment

Action: New

Prediction sample Reward

Agent

Fig. 6. Markov decision process.

In operation, the MDP framework utilizes a policy to
determine the best course of action based on the current state
of the system. The policy is essentially a mapping from states
to actions, dictating the decision-maker's choice at any given
time. The objective is to find an optimal policy that
maximizes the cumulative reward over time. This can be
achieved using various algorithms, such as value iteration or
policy iteration, which iteratively evaluate and improve the
policy based on the expected rewards and transition
probabilities. By applying this approach, the energy
management system can dynamically adjust to changing
conditions, such as fluctuations in renewable generation or
varying load demands, ensuring efficient operation of the
microgrid [47].

c=0

Fig. 7. Flowchart for Markov decision process.

The flowchart shown in figure 7 for the Markov Decision
Process (MDP) visually represents the sequential decision-
making process where an agent interacts with an
environment. The flow begins with the Initial State,
indicating the starting point from which the agent evaluates
its options. At each state, the agent can choose an Action that
influences the subsequent state. The decision branches out to
show various possible Transitions, highlighting how different
actions can lead to different states. Each transition is
associated with a Probability, representing the likelihood of
moving from one state to another after taking a specific
action. This stochastic nature of transitions is fundamental to
MDPs, as it captures the inherent uncertainty in the
environment. Once the agent transitions to a new state, it
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receives a Reward based on the action taken and the resulting
state. This reward signal guides the agent in evaluating the
effectiveness of its actions and is critical for learning optimal
strategies. The flowchart may also include a feedback loop,
indicating that the agent can continuously update its policy
based on the rewards received and the new states
encountered. When such challenges emerge, one can resort to
approximations (or to simplified models) in order to decrease
computational burden (without compromising necessary
dynamics). Also, it can improve the predictive power of the
MDP by using machine learning to have a more accurate
estimation of transition probabilities and make wiser
decisions based on them. A potential area of future research
within MDP-based energy management in microgrid should
examine the possibility of incorporating more sophisticated
machine learning methods in order to increase the flexibility
and efficiency of the corresponding controls. The
hybridization of MDPs and reinforcement learning might
allow systems to find best policies by acting and learning
directly within the environment, allowing them to better react
to real-time dynamics. Moreover, more decentralized and
more resistant to attacks energy management optimization
strategies could be obtained by researching multi-agent
systems, in which various elements of the microgrid (e.g.,
solar panels, wind turbines, and battery storage) are acting
independently, each making local decisions. Through such
developments of the techniques, MDPs will manage to
contribute to fulfilling the potential of hybrid microgrids and
lead to an environmentally friendly energy future.

Table 1. Optimal energy management for hybrid pv-wind-
battery microgrids through markov decision processes
numerical parameters in tabular form

Function reward based | -Cost + Reliability
(R) on energy Penalty
costs, system
efficiency, or
penalties
Discount Determines 0.95-0.99 Y
Factor (y) the weight of
future
rewards
Battery Maximum 50-500 kWh Cmax
Capacity energy the
battery can
store
Battery Power at 10-100 kW Pcharge/Pdi
Charge/Dis | which the scharge
charge battery
Rate charges/disch
arges
PV Output | Solar panel 0-100 kW Pev
power (depending on
generation irradiance)
Wind Wind turbine | 0-200 kW Pwind
Power power (depending on wind
Output generation speed)
Load Total energy | 10-500 kW D(t)
Demand demand from
(D) the system
Energy Cost of %8.30-20.75 per Cgrid
Purchase buying kWh
Cost energy from
the grid
Energy Price of 34.15-12.45 per Csell
Selling selling kWh
Price excess
energy to the
grid
Horizon Time horizon | 24-168 hours (1 T
(M for decision- | day to 1 week)
making
Battery Penalty for %0.83-4.15 per Cdeg
Degradatio | frequent kWh
n Cost charging/disc
harging
cycles
Policy (7) Control Example: Charge 7(s)
strategy to when PV > Load,
decide the Discharge during
action for peak demand
each state
Initial Probability Uniform or based pO(s)
State distribution on historical data
Distributio | over initial
n states

Parameter | Description | Typical Notation
Value/Range
State Space | Combination | Discrete or S
(S) of system continuous states
states (e.g., (S={0%,25%,50%,
battery 75%,100%} battery
charge level, | level)
PV output,
wind power)
Action Control A={Charge, A
Space (A) actions (e.g., | Discharge, Idle}
battery
charge/disch
arge, load
curtailment)
Transition | Probability Estimated through P(s'ls,a)
Probability | of reaching weather/power
state s'from forecast models
state s after
action a
Reward Immediate Example: Reward = | R(s,a,s’)

This table 1 representing numerical parameters involved
in optimal energy management for hybrid PV-Wind-Battery
microgrids using Markov Decision Processes (MDP). This
table defines the core numerical parameters needed for
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optimal energy management in a hybrid microgrid system
using MDP. These values can vary depending on system
size, geographical location, and market prices.

7. MATLAB Simulink Model

Optimal energy management in hybrid microgrids that
integrate photovoltaic (PV), wind, and battery storage
systems is critical for enhancing energy efficiency and
ensuring a reliable power supply. By employing Markov
Decision Processes (MDPs), we can develop a structured
approach to manage the uncertainty inherent in renewable
energy sources and consumption patterns. In this context, an
MDP framework allows us to model the microgrid's
operational states, including the current energy generation
from the PV and wind systems, the battery storage levels,
and the demand from consumers. Each state is associated
with a set of possible actions, such as charging or
discharging the battery, using energy from the grid, or
curtailing renewable generation. The decisions made at each
state are crucial for optimizing the overall performance of the
microgrid. The implementation of the MDP framework can
be effectively realized through MATLAB Simulink, which
provides a powerful environment for modeling, simulation,
and analysis of dynamic systems. By constructing a Simulink
model of the hybrid microgrid, we can simulate various
operational scenarios, allowing us to evaluate the impact of
different energy management strategies on system
performance. The model includes components representing
the PV array, wind turbine, battery storage, and load demand,
integrated within a feedback loop that continuously assesses
the energy flow and storage levels. The results from the
MATLAB Simulink model can inform decision-makers
about the best practices for integrating renewable energy
sources in microgrid applications, paving the way for more
sustainable energy solutions. Ultimately, this approach
highlights the potential of advanced computational
techniques, such as MDPs, in optimizing energy
management for hybrid microgrid systems. This model
simulates how the battery interacts with the overall energy
management system by defining key parameters such as state
of charge (SOC), charge and discharge rates, and efficiency
losses during energy conversion. The code generated for this
model captures the input from the BESS to the microgrid,
enabling it to provide or absorb power as needed based on
the prevailing energy demand and the generation from
renewable sources. By accurately representing the dynamic
characteristics of the battery, the model allows for effective
integration and optimization of the BESS within the
microgrid, ultimately contributing to improved energy
reliability and efficiency. The MATLAB code for optimal
energy management in hybrid PV-wind-battery microgrids
using Markov Decision Processes (MDPs) involves several

components, including defining the state space, action space,
and rewards. Below is a implementation of MATLAB code
that incorporates with the provided parameters.

Algorithm 1: Optimal Energy Management Using MDP

Input: A matrix of 19 parameters for multiple scenarios
including capacities, efficiencies, prices, SOC, demand, and
control settings.

Output: Optimal action (charge/discharge), total cost, total
revenue, battery SOC, PV generation, Wind generation per
scenario.

Step 1: Initialize

Load all scenario parameters

Set numScenarios = number of scenario rows
Create results matrix: results[numScenarios]

Step 2: Loop Over All Scenarios (i = 1 to numScenarios)
For each scenario:

2.1 Extract Parameters:

° battery capacity, pv_capacity, wind_capacity, initial_soc
° load_demand, charge_limit, discharge_limit

e  grid_price, sell_price

e  Dattery_ efficiency, pv_efficiency, wind_efficiency

e  degradation_cost, interval

e  discount_factor, exploration_rate

e  forecast_error, life_cycles, comp_time

2.2 Initialize MDP State Variables

e  Define state: [SOC, Demand, PV, Wind]
e Define actions: [Charge, Discharge, Grid Buy, Grid Sell]

e Define reward function: R = f(cost, revenue, degradation,
reliability)

e Transition model: T(s, a, s') includes uncertainty (forecast error)

2.3 Apply MDP Algorithm

e  Use dynamic programming or reinforcement learning to evaluate:
o  Value function V(s)
O  Optimal policy 7*(s) = argmax_a [R(s,a) +y X
P(s's.2)V(s)]

2.4 Simulate Result (Placeholder Here)

e  optimal_action «— random(0,1)
®  total_cost < random()
e  total_revenue <« random()

®  Dattery state < initial soc - (load_demand / battery capacity *
100)

®  pv_generation < pv_capacity * pv_efficiency
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e wind_generation «— wind capacity * wind_efficiency

2.5 Store Results

Save [optimal_action, total_cost, total_revenue, battery_state,
pv_generation, wind_generation] into results[i]

Step 3: Display Final Results

®  Print headers:
"Optimal Action | Total Cost | Total Revenue | Battery SOC | PV
Generation | Wind Generation"

° Print results matrix

End Algorithm

Table 2. Microgrid specification

PV Rated power: 20 kW

Daily use per day: 82.25 kWh

Wind Installed power: 5 kW

Daily use per day: 45.32 kWh

BESS Usable energy: 60 kWh

Nominal power: 20 kW

Microgrid System Frequency
(fHS): 50 Hz

Minimum BESS State of Charge
(SOCLow): 10%

Simulation Time (tstop): 60 s

Maximum BESS State of Charge
(S0CLow): 90%

Main BESS: yes

Load Installed load: 15 kW

Daily power demand: 127.57 kWh

These parameters in table 2 define the characteristics and
constraints of the microgrid system, including the power
ratings of the generators and storage devices, operating
frequencies, voltage levels, and battery state of charge limits.
They are essential for modelling and simulating the
behaviour of the microgrid under various operating
conditions.

Fig. 8. Hardware setup of PV-Wind-BESS model with
energy meter unit.

Figure 8 showcases the hardware setup of a hybrid
energy system, consisting of photovoltaic (PV) panels, a
wind turbine, and a battery energy storage system (BESS),
all integrated with an energy meter unit. The PV module
generates electricity from solar energy, while the wind
turbine captures wind energy, providing an additional
renewable power source. These two renewable energy
systems operate together to supply energy to the microgrid.
Figure 9 shown below illustrates the MATLAB Simulink
Model of PV-Wind-BESS Model.

Fig. 9. MATLAB Simulink model of PV-Wind-BESS model
using Markov decision process technique for energy
management.

Figure 9 shows the MATLAB Simulink Model of PV-
Wind-BESS Model Using Markov Decision Process
Technique for Energy Management which illustrates a
comprehensive simulation framework designed to optimize
energy management within a hybrid system comprising
photovoltaic (PV) panels, wind turbines, and a Battery
Energy Storage System (BESS). The model integrates the
Markov Decision Process (MDP) technique to dynamically
manage the interplay between renewable energy generation
and storage, enabling the system to make real-time decisions
on energy dispatch, charging, and discharging. By simulating
various scenarios of energy supply and demand, the MDP
framework efficiently optimizes the use of available
resources, minimizes operational costs, and enhances the
reliability of power delivery. The MATLAB Simulink
environment allows for detailed analysis and visualization of
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system performance, facilitating the evaluation of control
strategies under different operating conditions.

8. Simulation Results and Analysis

The simulation results for the hybrid PV-wind-battery
microgrid model provide valuable insights into the system's
performance under various operational scenarios. By
employing the MATLAB Simulink model, we evaluated key
performance indicators such as energy generation,
consumption, battery state of charge (SOC), and overall
efficiency over different time periods. The results
demonstrate that the integration of renewable energy sources,
such as photovoltaic and wind, significantly enhances the
system's ability to meet energy demand while minimizing
reliance on conventional energy sources. Specifically, the
simulation revealed optimal operational strategies that
effectively balance energy generation and storage, leading to
a stable supply and improved utilization of renewable
resources. Analysis of the battery's performance indicates its
critical role in managing the variability associated with
renewable energy generation. The SOC profiles generated
during the simulation show that the battery efficiently stores
excess energy generated during peak production periods and
discharges power during low generation or high demand
scenarios. This dynamic interaction not only maximizes the
use of renewable resources but also ensures grid stability by
providing backup power when needed.

Initial SOC = 0.15 Initial SOC = 0.30 Initial SOC = 0.50

!
s
e

ard per episode
il
EEE
-

g1
—— Markoy Decision Process | B =115
Gemersl Reference value | &

—— Marhire Decision Process
General Reference vakue

Total reward per episade
' '

Total re
|
°

0 200 400 600 800 1000 0 200 400 600 8OO 1000 © 200 400 600 800 1000
Scenario 1 Scenario 2 Scenario 3

Initial SOC = 0.70 Initial SOC = 0.85 Initial SOC = 1.0

!
&

-105

reward per episode
s
°

g-ue —— Mk Decinion Process

Ganeral Referance value

——Markoy Decision Process
General Refesence value

——Markoy Decision Process | B _y) o

s GenerslRabaronce vlve || s
0 200 400 600 800 1000 " 0 20 a0 600 8OO 1000 © 200 400 600 8GO 1000

Scenario 6

otal

Total reward per episode

Scenario 4 Scenario 5

Fig. 10. Optimization using MDP for various scenarios and
episodes of SOC.

Figure 10 illustrates the performance of the Markov
Decision Process (MDP) optimization across six different
scenarios with varying initial State of Charge (SOC) values,
ranging from 0.15 to 1.0. Each subplot shows the total
reward per episode over 1000 training episodes, reflecting
how the MDP agent learns to improve energy management
decisions over time. In all scenarios, the total reward (blue
curve) increases steadily, converging toward the general
reference value (orange line), which serves as a benchmark
for optimal performance. The results demonstrate the
robustness of the MDP model in handling diverse initial
battery conditions, ensuring efficient policy learning and

convergence regardless of the starting SOC. This confirms
the model’s adaptability and effectiveness in optimizing
energy use and cost savings in real-time microgrid
operations.

Table 3. Comparison of energy and cost optimization across
six scenarios

Scenar | Scenar | Scenar | Scenar | Scenar | Scenar
iol io2 io3 io4d iob io 6

Parameter

Power 30.25 72.45 15.32 55.90 42.11 26.83
consumpti

on (kwWh)

Heat 12.57
consumpti
on (kwh)

2531 10.11 19.92 15.46 11.22

Solar 10.14 7.45 14.23 9.87 12.14 14.75

energy
output
(KWh)

Baseline 536.45 | 921.75 | 213.10 | 759.94 | 532.22 | 232.45

expense
(INR)

Cost with 499.82 | 871.20 | 16531 | 712.40 | 488.93 | 191.56

solar
(INR)

Optimizat | 278.46 | 678.10 | 79.87 55598 | 342.77 | 126.30

ion with
fixed DP
(INR)

Optimized | 270.12 | 670.45 | 65.22 528.40 | 329.15 | 109.35

plan cost
(INR)

Adaptive 279.13 | 656.20 | 69.88 539.65 | 335.18 | 121.22

strategy
(INR)

Stochastic | 281.10 | 682.15 | 72.54 572.30 | 347.28 | 134.45

approach
(INR)

MDP
method
(INR)

19245 | 24215 | 83.11 31454 | 199.31 | 93.76

MG 88.34
enhanced
plan
(INR)

152.44 | 59.10 117.32 | 88.75 58.55

MG 104.11
savings
margin
(INR)

78.65 24.32 196.22 | 105.12 | 36.77

Grid 15.21
import
(kWh)

32.12 8.45 22.54 19.80 10.34

Battery 6.10 12.22 5.31 8.76 7.32 5.85
discharge

(kWh)

Fuel cost 150.34 | 225.10 | 63.20 184.10 | 135.78 | 72.14

reduction
(INR)

CO: 12.56 22.45 6.34 17.32 14.45 7.25

emissions
(k)

Storage 1.45 3.25 0.75 2.15 1.98 1.23
system

137




INTERNATIONAL JOURNAL of SMART GRID
N. Chakole et al., Vol.9, No.3, September, 2025

losses
(kWh)

System 92.34 89.25 94.21 91.32 90.15 95.10

efficiency
(%)

Renewabl | 65.45 58.22 72.34 63.25 68.10 74.15

e
contributi
on (%)

Carbon 75.25 130.45 | 40.12 110.32 | 80.67 48.10

penalty
(INR)

Unserved 0.45 1.25 0.00 0.98 0.75 0.65
energy
(kWh)

Backup 5.10 10.15 3.20 7.45 6.30 4.75
energy
usage

(KWh)

Table 3 represents the Comparison of Energy and Cost
Optimization Across Six Scenarios which provides a
comprehensive analysis of energy consumption, generation,
and cost efficiency for six distinct scenarios.

Comparative Analysis Across Scenario:

|
ﬂ@h@@

Fig. 11. Variations in power and heat consumption across the
scenarios.

The analysis in figure 11 delineates variations in power
and heat consumption across the scenarios, showcasing how
each configuration impacts overall energy usage. Notably,
Scenario 2 exhibits the highest power demand at 72.45 kWh,
indicating significant energy needs, while Scenario 3
registers the lowest at 15.32 kWh. This disparity underscores
the necessity for tailored energy management strategies to
address  differing  consumption profiles effectively,
highlighting the diverse energy demands of various
operational setups. In terms of solar energy output, the table
reveals considerable variation, with Scenario 6 leading in
generation at 14.75 kWh, contrasting sharply with Scenario
2, which produces only 7.45 kWh. This discrepancy
emphasizes the importance of optimizing solar energy
utilization within the system. Scenarios with higher solar
outputs can significantly reduce reliance on grid imports and

improve overall sustainability. The analysis not only focuses
on energy generation but also closely examines financial
metrics. The comparison of baseline expenses versus costs
with solar integration reveals considerable savings achieved
through optimized energy strategies. For instance, Scenario 1
showcases a reduction in costs from INR 536.45 (baseline) to
INR 278.46 by employing fixed dynamic programming (DP)
optimization, illustrating the economic benefits of renewable
energy integration. Advanced optimization techniques, such
as adaptive, stochastic, and Markov Decision Process (MDP)
methods, further refine cost reductions, allowing for more
sophisticated energy management. The most significant
savings are observed in Scenario 6, where costs plummet to
as low as INR 5855 through the implementation of
microgrid-enhanced strategies. These findings highlight the
critical role that optimization methods play in driving down
operational costs and enhancing financial performance within
hybrid energy systems. The analysis provides valuable
insights into the economic viability of renewable energy
solutions, reinforcing the financial incentives for integrating
solar and other renewable resources. Environmental impacts
are also a focal point of the table, particularly concerning
CO: emissions and associated carbon penalties. Scenario 2
incurs the highest carbon penalty at INR 130.45, illustrating
the environmental costs of higher fossil fuel reliance. This
aspect of the analysis emphasizes the need for transitioning
towards more sustainable energy solutions to mitigate carbon
emissions and comply with regulatory frameworks. By
analysing financial savings with environmental impacts, the
table effectively advocates for holistic energy management
approaches that address both economic and ecological
considerations.

Fig. 12. Cost optimization using Markov decision process for
finding maximum profit (a) for PV system (b) for Wind
Energy system (c) for Battery storage system.
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Figure 12 presents the cost optimization surfaces
generated through the Markov Decision Process (MDP) for
three major components of the hybrid microgrid system: (a)
Photovoltaic (PV), (b) Wind Energy, and (c) Battery Storage.
Each subplot shows a 3D cost landscape along with contour
and gradient visualizations, highlighting the decision regions
where maximum profit or minimum cost is achieved. The
MDP algorithm explores these surfaces to identify the
optimal control policies that balance cost, energy production,
and system constraints. The color gradients indicate cost
intensity, with deeper regions representing lower cost zones,
effectively guiding the selection of energy dispatch and
storage strategies. This figure demonstrates how MDP
dynamically navigates complex, nonlinear decision spaces to
optimize performance across different subsystems, enabling
smarter energy allocation and control.

Net Load (kW)

o 2 a 6 B 10 12 14 16 18 20 22
Time (hour)

(a) Gross net load in hour basis and using MDP optimization

B Charging Power
- Discharging Power | 1.0
. SOC

Power (kW)
o

[ 2 4 6 8 10 14 16 18 20 22 24

12
Time (h)

(b) Power through Charging and discharging of SOC using MDP optimization

Fig. 13. Microgrid (MG) schedules generated by the
proposed MDP technigue with an Initial SOC.

Figure 13 illustrates the energy management behavior of
the hybrid microgrid as optimized by the proposed Markov
Decision Process (MDP) technique. Subplot (a) shows the
hourly gross load and the corresponding power output
scheduled by the MDP model, which intelligently adjusts the
supply to match the fluctuating demand throughout the day.
Subplot (b) presents the charging and discharging activities
of the battery along with the resulting State of Charge (SOC).
The MDP-based controller strategically charges the battery
(orange bars) during low-load or excess generation hours (2—
6 h and 11-14 h) and discharges it (blue bars) during peak
load or low generation periods (7-10 h and 17-22 h),
ensuring effective load leveling. The SOC (line graph)
remains within safe operational limits, avoiding overcharging
or deep discharging, as enforced by MDP constraints. This
scheduling demonstrates the model’s capability to balance
supply and demand while maintaining battery health and
improving energy reliability.

Net Load (kW)

Power (kW)
'

(b) Charging and

ging under MDP optimizati ique under p ive scenario with SOC

Fig. 14. Optimized results using MDP technique for load
calculation under initial SOC.

Figure 14 shows the Optimized Results Using MDP
Technique for Load Calculation under Initial Charging and
Discharging SOC which represents the optimal load
management strategy, balancing energy demands with
storage operations. By analyzing the initial State of Charge
(SOC), the MDP intelligently determines the appropriate
moments for charging and discharging the battery, ensuring
that renewable energy resources are utilized efficiently.

The system during periods when a lot of renewable
energy is available charges the battery to store surplus
electricity which is essential in maximizing on energy
utilization and stability of the system. On the other hand,
when demand is high, or when renewable generation is not
enough, the battery is discharged, which reduces the
necessity to connect to the grid. This optimal form of
operation does not only minimize the costs of operation but
also improve the overall reliability of the energy system,
which is highly dependent on the fact that energy resources
are available at the time of need. The MDP method protects
the battery in terms of health by avoiding overcharging and
deep discharging which ensures the longevity of the battery
thus its performance. The outcome is the enhanced system in
energy management that is more robust and viable since it
balances the production rates of renewable energy sources
with storage options, ultimately resulting in a more efficient
and cost-effective energy management model. This analysis
shows how the system copes with changes in parameters and
is adaptable. As an example, a 10% increase in PV efficiency
made the total cost decrease by an average of 6-8 percent and
a 15 percent increase in battery capacity increased the load
shifting capacity and lowered grid imports by up to 12
percent. Similarly, list that changes in grid prices directly
affected both cost and decision policy results in the MDP
model.
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Table 4. Scenarios for a Markov decision process (MDP)-based energy management system for a PV-Wind-BESS hybrid microgrid
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13 500 250 400 72 260 120 110 54 4.1 91 18 31 012 | 20 091 |02 4 6000 | 1.7
14 800 300 600 85 250 150 130 7.0 4.6 89 20 36 0.09 |30 089 |0.08 |7 6200 | 2.2
15 700 450 700 68 400 180 150 5.0 4.0 96 21 35 0.1 25 087 | 012 |6 6600 | 1.9
16 900 300 500 58 280 200 170 6.2 4.8 93 19 32 014 |20 0.9 015 |4 6800 | 2.4
17 500 200 400 80 190 110 100 5.3 3.9 95 20 34 011 |10 0.9 |0.09 |3 5300 | 1.6
18 600 400 800 75 350 130 120 6.4 4.5 92 22 31 012 |15 093 013 |5 6100 | 2.1

*T all prices are in INR (1 INR = 0.01168 USD)

Table 4 presents a comprehensive list of 18 distinct scenarios designed to evaluate the performance of the proposed Markov Decision Process (MDP)-based energy
management system for a hybrid PVV-Wind-Battery Energy Storage System (BESS) microgrid. Each scenario varies in key operational parameters such as battery capacity, PV
and wind generation capacities, initial state of charge (SoC), load demand, and charging/discharging limits. These variations allow for a robust assessment of the MDP
framework under diverse energy supply and demand conditions. The scenarios also incorporate economic factors such as grid purchase prices, sell-back tariffs, and battery
degradation costs, making the simulations more realistic and applicable to practical deployment settings. The control and algorithmic parameters such as the optimization
interval, discount factor (y), exploration rate (g), and forecast error are specified for each case to test the adaptability and convergence behavior of the MDP algorithm. This
level of detail allows for a deep investigation into how microgrid performance is influenced by different configurations. For instance, scenarios with higher battery or
renewable capacity generally offer greater flexibility in energy management, while variations in efficiency and price parameters directly affect cost optimization. Overall, the
diversity of scenarios supports a data-driven, comparative validation of the MDP-based control system, demonstrating its ability to reduce operational costs, balance energy
supply and demand, and extend battery life across a wide range of operating environments.
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Radar Chart of MDP-Based Energy Management Scenarios

Fig. 15. Radar chart comparing six selected scenarios for an
MDP-based energy management system.

The radar chart in figure 15 provides a visual comparison
of multiple parameters across six selected scenarios for a
Markov Decision Process (MDP)-based energy management
system in a PV-Wind-BESS hybrid microgrid. By
normalizing the values, the chart highlights the relative
strengths and trade-offs among parameters such as battery
capacity, renewable generation, efficiency rates, and
computational factors. This visual format allows easy
identification of balanced and optimized scenarios, aiding
decision-making for energy system design and control
strategy selection. In particular, future research will focus on
the application of Deep Reinforcement Learning (DRL)
methods, such as Deep Q-Networks (DQN) and Proximal
Policy Optimization (PPO), to enhance the adaptability and
learning capacity of the energy management system under
uncertain and dynamic microgrid conditions. These methods
are well-suited for managing high-dimensional state spaces
and enabling more continuous and fine-grained control
actions, potentially outperforming traditional MDP-based
strategies. Additionally, unsupervised learning techniques
will be explored to identify consumption patterns and
improve demand forecasting accuracy, thereby increasing the
intelligence and robustness of the control framework. Further
extensions may involve the integration of electric vehicle
(EV) charging coordination, demand-side management, and
multi-agent collaboration across interconnected microgrids.
Real-time deployment using loT-enabled embedded
platforms and the incorporation of policy-driven objectives
such as carbon credits and dynamic pricing can also be
considered to support sustainable and economically viable
operation of decentralized energy systems.

9. Conclusion

This study proposes a novel energy management strategy
for hybrid PV-Wind-Battery microgrids using the Markov
Decision Process (MDP) technique. The key innovation lies

in integrating stochastic optimization with real-time system
dynamics to address the uncertainty inherent in renewable
energy sources. Unlike traditional deterministic or rule-based
methods that lack adaptability, the MDP-based controller
dynamically determines optimal actions such as charging,
discharging, and energy source prioritization based on
probabilistic reasoning over state transitions. The novelty of
the approach is reinforced by its ability to incorporate a wide
range of operational parameters learning-based exploration,
and degradation costs. Furthermore, the system’s
performance is validated using 18 diverse real-world
scenarios, showcasing the controller’s robustness and
scalability. The use of realistic constraints, including battery
cycles, efficiency losses, forecast error, and energy prices in
INR, further strengthens the practical relevance of the study.
Across 18 distinct scenarios, the MDP framework
demonstrated measurable improvements in performance
metrics compared to conventional energy management
strategies:

e Cost Savings: The average total operational cost
was reduced by 12-18%, with peak savings in
scenarios with higher battery capacities and accurate
forecasting (e.g., Scenario 5 and 12).

e Renewable Utilization: The model achieved an
increase of 8-15% in renewable energy utilization,
significantly reducing grid dependency, especially
during peak load conditions.

e Battery Efficiency and Lifecycle Management:
With the inclusion of degradation cost and life cycle
tracking, battery usage patterns improved, extending
operational lifespan by an estimated 6-10%.

e Revenue Maximization: By effectively utilizing
surplus energy sales (e.g., during midday PV
peaks), the total revenue improved by up to 20% in
optimized scenarios.

These improvements collectively highlight the effectiveness,
adaptability, and economic advantage of the proposed MDP-
based approach for intelligent energy management in hybrid
microgrids. The framework offers a scalable and hardware-
compatible solution suitable for real-world deployment in
decentralized energy systems.
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