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Abstract- It is a challenge the world has never faced to shift away from energy sources that use fossil fuels and toward ones 

that are more sustainable and better for the environment.  The development of solar photovoltaic (PV) systems is one of the 

most exciting developments in the field of renewable energy. However, because these devices operate inconsistently and only 

occasionally, integrating them into the energy grid presents several significant issues. Recent research examined how artificial 

intelligence (AI) and machine learning (ML) could be used to enhance the management, control, monitoring, maintenance, and 

performance of renewable energy systems. The aim of this article is to investigate if it is possible to predict the amount of  

power that photovoltaic (PV) systems will produce using machine learning long short-term memory (LSTM) neural networks 

and the Nadam optimizer. A particular kind of neural network that has performed well in time series forecasting is the long 

short-term memory (LSTM) design. The objective of this research is to develop a new method of weather forecasting that, 

when used over a time horizon of 24 hours, can produce reliable and precise projections of electricity output. The LSTM 

models are compared to the SARIMA and ARIMA time series models in the article. In comparison with modern approaches, 

the Nadam optimizer-based LSTM model provides predictions that are more accurate. In an attempt to enhance accuracy and 

dependability, the article also looks at how climate impacts predict solar energy. The Nadam optimizer and LSTM are 

combined in this work to anticipate solar power. The article's conclusions will assist in solar power system optimization, 

operation, and design, which will increase dependability and profitability. 

Keywords: Solar photovoltaic, Long Short-Term Memory (LSTM), Nadam optimizer, time series forecasting. 

 

1. Introduction 

Solar PV systems are a reliable and sustainable energy 

source that can help us become less reliant on fossil fuels [1]. 

For the effective management and use of renewable energy 

resources, accurate solar PV power production forecasting is 

essential. Solar photovoltaic (SPV) power forecasting is 

crucial to the efficient integration and operation of SPV 

plants, particularly in the context of contemporary plants 
with greater capacity and their integration into the grid. 

When it comes to more recent plants, this is especially 

accurate. The majority of the research in SPV power 

forecasting, however, has focused on techniques with a short 

time horizon. These techniques fall short of what the 

contemporary SPV plants demand. As a result, there is an 

urgent need to shift the emphasis towards approaches that 

offer a power prediction for SPV systems over a long 

horizon. Additionally, the vast majority of research in this 

field has mostly concentrated on SPV plants with constrained 

capacity, neglecting to take into consideration the particular 

challenges provided by plants with greater capacities. The 
inadequacy of current methodologies for managing the 

complexity of higher-capacity SPV systems may be shown 

by the significant increase in the root mean square error 

(RMSE) that results from applying existing forecasting 

techniques to larger plants. Root mean square error is 
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referred to as RMSE. Additionally, the short duration of 

meteorological and electricity data records as well as the 

potential for mistakes in these records create a challenge to 

their use in forecasting. It is hard to completely capture the 

range of meteorological conditions and variations in power 

production during the little time that data collection occurs. 

This has a detrimental effect on the precision and 

dependability of forecasting models. 

Recent research examined how artificial intelligence 

(AI) and machine learning (ML) may be used to enhance the 

management, control, monitoring, maintenance, and 

performance of renewable energy systems [2]. The purpose 

of this article was to provide answers to the raised queries. 

The ability of ML to forecast the amount of power that PV 

systems will produce is crucial for integrating them into the 

energy grid [3]. It's crucial to create accurate projections in 

this field. Grid operators can increase dependability, reduce 

costs, and maximize the use of renewable energy with the aid 

of accurate forecasts [4]. 

Solar energy may easily be incorporated into existing 

power infrastructures and is a clean, economically viable, 

and healthy source of energy. It is a challenge the world has 

never faced to shift away from energy sources that use fossil 

fuels and toward ones that are more sustainable and better for 

the environment. The urgent need to mitigate the 

consequences of climate change and ensure that future 

generations will have a sustainable future is what is driving 

this transition. This transformation is being driven, namely, 

by how rapidly things must change. The development of 

solar photovoltaic (PV) systems is one of the most exciting 

developments in the field of renewable energy. However, 

because these devices operate inconsistently and only 

sometimes, integrating them into the energy grid presents a 

number of significant issues. 

Integrating solar PV systems into the power grid presents 

significant challenges due to their variable and intermittent 

nature. Accurate solar power forecasting is crucial for 

maintaining grid stability and efficient energy management. 

Traditional forecasting methods, such as hybrid approaches, 

artificial neural networks (ANN), numerical weather 

prediction (NWP), and autoregressive integrated moving 

average (ARIMA), have predominantly focused on short-

term predictions. While these methods suffice for smaller, 

standalone PV systems, they are inadequate for modern, 

larger-capacity, grid-integrated PV systems, which require 

more sophisticated, long-term forecasting techniques. Long 

short-term memory (LSTM) neural networks, a type of 

machine learning model, offer a promising solution for these 

challenges. LSTM networks excel in time series forecasting 

by effectively capturing temporal dependencies. By utilizing 

historical power production data, meteorological sequences, 

and advanced weather forecasts, LSTM models can provide 

more accurate and reliable long-term predictions of PV 

power output [5]. This capability is essential for enhancing 

grid reliability, optimizing energy management, and 

maximizing the utilization of renewable energy sources [6]. 

As we move away from fossil fuels and toward sustainable 

energy, developing precise and dependable solar PV 

forecasting systems becomes increasingly important. These 

systems facilitate better integration of solar energy into 

existing power infrastructures, thereby contributing to the 

mitigation of climate change and the creation of a sustainable 

future for generations to come [2]. Thus, shifting the focus 

from short-term to long-term forecasting approaches is 

imperative to address the unique challenges posed by high-

capacity PV plants and ensure the continued growth and 

efficiency of renewable energy systems [3]. 

The purpose of this article is to investigate if it is 

possible to estimate the amount of electricity that 

photovoltaic (PV) systems will produce using machine 

learning long short-term memory (LSTM) neural networks. 

A particular kind of neural network that has performed well 

in time series forecasting is the long short-term memory 

(LSTM) architecture [5]. The objective of this research is to 

develop a new method of weather forecasting that, when 

used over a time horizon of 24 hours [6], can produce 

accurate and dependable projections of electricity output  [7]. 

The suggested method's effectiveness will be evaluated using 

historical measurements of power production and sequences 

of meteorological data taken prior to the prediction horizon 

as input data. A separate set of information from an oracle 

weather forecaster will also be considered in addition to this. 

The purpose of this article is to evaluate the effectiveness of 

an LSTM model that has been trained on various types of 

input data to determine the best method for predicting the 

power output of PV systems. We'll look at the various data 

input types. The ultimate objective of this article is to 

contribute to the creation of solar PV power forecasting 

systems that are more precise and trustworthy. These ways of 

doing things can help make it easier to add green energy to 

the power grid.  

To ensure smooth grid operations, effective energy 

management, and economical scheduling, an accurate solar 

photovoltaic (PV) power projection system is essential. 

Current popular prediction methods such as hybrid 

techniques, artificial neural networks (ANN), numerical 

weather prediction (NWP), and autoregressive integrated 

moving average (ARIMA) have shown limited success, 

being more suitable for short-term forecasts typically needed 

by smaller, standalone PV systems. However, with the 

increasing complexity of modern, grid-integrated PV 

systems, there is a pressing need for more reliable and 

enhanced long-term forecasting techniques. a detailed 

literature review reveals that many existing methods still rely 

on outdated solar photovoltaic (SPV) power projection 

techniques, neglecting crucial meteorological factors that 

significantly impact prediction accuracy. This oversight leads 

to suboptimal monitoring, maintenance, and control of power 

from renewable sources. Various studies employing 

techniques like NN [9], ARIMA/SARIMA [10], NWP [11], 

LSTM [12], and hybrid models [13] have assessed the 

accuracy of long-term solar power forecasts. Specific 

advancements include short-term forecasting methods [14], 

machine learning applications for solar generation prediction 

[15], and hybrid models that merge different approaches to 

improve accuracy [16]. Additionally, research has delved 

into optimizing solar energy systems and analyzing their 

cost-benefits [17], as well as using artificial neural networks 
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to predict energy parameters [18]. These studies highlight the 

continuous efforts to enhance solar power forecasting to 

fulfill the requirements of advanced, grid-connected PV 

systems. 

The structure of this study comprises several key 

sections: an introduction to the importance of accurate 

forecasting, a review of photovoltaic (PV) technology, a 

classification of existing forecasting methods, the proposed 

LSTM model, results and discussion, and a conclusion 

summarizing the research findings and their implications 

section titles are italic. 

2. Photovoltaic Solar Power  

A photovoltaic (PV) system is a combination of solar 

modules, each of which contains solar cell units capable of 

transforming the energy present in solar radiation into usable 

power. These systems are differentiated by their absence of 

greenhouse gas emissions and pollution as compared to the 

non-renewable energy sources that have historically been 

used on a regular basis, earning them the reputation of being 

ecologically advantageous. [19]. However, several factors 

can decrease the efficiency of photovoltaic (PV) systems that 

are connected to the grid. The condition of the surface, the 

quantity of solar irradiance, the degree of radiation intensity, 

and the amount of cloud cover must all be considered to 

obtain an accurate estimate of the potential power output of a 

PV system. Additionally, the temperature of the air around 

the solar cells has an impact since solar cells lose efficiency 

as the temperature rises. According to the random nature of 

several additional meteorological parameters, the power 

output of a photovoltaic (PV) system is not a simple linear 

function of the quantity of sun irradiation [20]. 

  

If one desires to accurately assess and foresee the 

performance of PV systems, one must fully comprehend this 

complexity and take them into account. By taking into 

consideration the aforementioned factors, researchers may 

create precise predicting models. These models consider the 

intricate workings of PV systems, which enhances the 

reliability and effectiveness of solar energy generation. 

Since Edmond Becquerel discovered the photovoltaic 

phenomenon in around 1839 [21], The amount of people 

who have an affinity for photovoltaic solar energy has 

increased. The first solar cell was produced in 1876, but for a 

sizable period of time, technological developments were 

restricted to research done outside. Perhaps not until 

approximately 1960 did this kind of technology start to be 

produced on an industrial scale [21,22]. Two significant 

events were pivotal in the process and stimulated the 

development of solar technology. The first significant 

achievement was motivated by the need for alternate power 

sources to bring energy to rural locations. The so-called 

"space race," which utilized solar technology to power 

several pieces of equipment that were kept in space, was the 

second major event [21,22]. The increase in oil prices in the 

1970s accelerated the advancement of solar technology. 

Early in the 2000s, countries began making substantial 

investments in the production of solar modules, finally taking 

the lead in this sector in 2009 [21]. According to CRESESB, 

the solar industry expanded at a rate of 54.2% each year 

between 2003 and 2014. [21]. In terms of solar power 

installed capacity, China is at the top in the world, followed 

by the US and Japan. (Improving Safety and Health in 

Micro-, Small and Medium-Sized Enterprises: An Overview 

of Initiatives and Delivery Mechanisms, n.d.). Around the 

world, 294GW of solar electricity has been built as of 2016. 

The widespread use of solar energy is still hindered by the 

cost of solar panels. [21]. 

 Brazil installed solar power systems of 438.3 megawatts 

(MW) by the year 2017, dispersed throughout 15.7 thousand 

projects related to these systems [22]. Tax reductions, and 

support initiatives from public entities like the Brazilian 

Development Bank, some of the ways the nation aims to 

further stimulate the spread of solar installations include 

incentives for micro and distributed mini-generation systems. 

According to current predictions, solar energy will make up 

9% of Brazil's whole national energy supply by the year 

2050 [22]. The advancements in system efficiency that have 

been developed may be responsible for the increase in 

interest in solar production.  Around 5% of solar panels were 

efficient at the time, and one peak watt of power cost $1.785 

to produce. However, the cost of modules is currently $1.20 

per peak watt, and their efficiency has increased to roughly 

15% [22]. Considering silicon makes up over 95% of all 

photovoltaic cells produced globally, it is by far the most 

widely used material in the industry [21,22]. This is due to 

the fact that it is low-cost, readily available, and has well-

established production methods. The three main types of 

photovoltaic cells that are offered for sale on the market are 

those made of monocrystalline silicon, polycrystalline 

silicon, and thin silicon film [21]. 

To appreciate the operation of a photovoltaic (PV) cell 

as well as the operation of a PV panel, one must be aware of 

both solar radiation and irradiance [23]. The phrase "solar 

radiation" refers to solar energy that is transmitted to Earth as 

electromagnetic radiation. The Earth can either directly or 

indirectly absorb this solar energy. According to [23], diffuse 

radiation is light that indirectly strikes a surface after being 

refracted and reflected. The term "direct radiation" refers to 

light that is directed in a straight line of advancement toward 

a horizontal surface. As shown in Fig.1., a photovoltaic cell's 

basic components include electrical connections that 

complete the circuit and let electricity flow as well as two 

different types of semiconductor materials known as N-type 

and P-type [23]. A photovoltaic cell generates electricity by 

following the photovoltaic principle, which specifies that the 

cell should convert the solar energy it absorbs into electric 

current. 
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Fig. 1. Photovoltaic cell model. 

Crystalline silicon has the capacity to absorb light when 

it comes in contact with its surface, changing the substance's 

electrical properties as a result. The electrons in the crystal's 

valence layer will get excited if there is sufficient energy, 

allowing them to move freely throughout the structure. Due 

to the attraction and mobility of valence electrons, which are 

produced as a result of the excitation of electrons, both 

electrons and holes can move through the crystal. As the 

energy of the radiation increases, the electrons and holes in 

the system become more unstable [23]. 

Since the potential barrier is in charge of separating free 

electrons from holes, the solar cell will have an excess of 

electrons on one side and an excess of holes on the other, 

necessitating the need for a potential barrier. If the correct 

circumstances are present, the electric field created by this 

difference in potential can be exploited to produce current. 
The potential barrier is created by the interaction of two 

boron-doped silicon shells, one that is positively doped (P-

type) and the other that is negatively doped (N-type). The 

introduction of atoms with five valence electrons occurs 

when the material is negatively doped, whereas the 

introduction of atoms with one fewer electron in their 

valence shell occurs when the material is positively doped. 

Most electrons conveyed by the N-type material are followed 

by most holes carried by the P-type material [23]. Electrons 

from the N-type material fill the holes in the P-type material 

when the two types of materials come into contact. As a 

result, positive charge clusters form on the N side of the 

junction while negative charge clusters form on the P side 

[23]. When light strikes a material with an N-type atomic 

structure, the associated holes and electrons get separated, 

and the holes move quickly toward the barrier to unite with 

the negative charges on the P-type side. Similarly, whenever 

light contacts the P-type material, more electrons are 

produced in the N-type material.  When the electrons leave 

the N-type material and recombine with the holes on the P-

type side of the material, an electric current is created. When 

the cell is active, this procedure happens. The amount of 

current generated is proportional to the amount of light 

energy that is absorbed by the cell as well as the energy of 

the newly formed electrons [23]. 

3. Classification of Forecasting Methods 

One of the most essential elements of predicting the 

future is forecasting. It is an efficient statistical approach that 

may be applied to predict a wide range of features, from 

short-term projections for the following few minutes to long-

term estimations spanning several years. The choice of an 

appropriate forecasting technique in the context of solar 

photovoltaic (SPV) power forecasting depends on several 

factors, including the size of the PV plant, the necessary 

forecasting horizon, the location, and the presence of other 

climatic changes. To properly control the risks associated 

with predicting, it is crucial to choose the forecasting 

approach that is most suited. An extensive analysis of the 

different SPV forecasting approaches is given in the 

following sections. These sections provide information about 

the many SPV power forecasting approaches that are 

available. It is possible to examine the advantages and 

disadvantages of various forecasting approaches, paving the 

way for the selection of the approach that is most suited for 

creating precise and reliable SPV power predictions. This in-

depth understanding guarantees the effective management of 

the inherent uncertainties and issues related to SPV power 

forecasting, which ultimately promotes improved decision-

making and optimum performance in the renewable energy 

sector. 

3.1. Horizon Forecasting 

One of the most significant factors to take into account 

while deciding on the best technique for forecasting is the 

forecasting horizon, which refers to the time frame for which 

the SPV power output is predicted, as shown in Fig. 2., these 

forecasting techniques can be broadly categorized as short-, 

medium-, or long-term methods, each of which is tailored to 

meet certain deadlines and objectives.  The focus of short-

term forecasting techniques is on producing predictions for 

the very near or immediate future, frequently extending from 

a few minutes to a few hours.  With medium-term 

forecasting, the prediction horizon is expanded to days or 

weeks and insights into somewhat longer-term trends in 

power generation are provided. Last but not least, by offering 

projections for the months, years, or even decades into the 

future, long-term forecasting methodologies improve 

strategic planning and policymaking in the SPV sector. 

 

Fig. 2. Photovoltaic cell model. 

3.2. Historical Data-based  

Fig. 3. illustrates how many various forecasting methods 

have become available in the field of solar photovoltaic 

generation based on historical data. To produce reliable 

forecasting results, it is crucial to choose the right technique 

while taking the facts at hand and the desired time horizon 

into account. It is crucial to match the approach's suitability 

to the specific criteria that are required of it during the 

prediction process. The required time range, which can be 

short-, medium-, or long-term, should be considered when 

selecting a forecasting approach. 
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By providing a logical overview of the numerous options 

that are presently available, this thorough classification of 

forecasting approaches aids in the discipline's advancement. 

It empowers stakeholders to take informed decisions, which 

in turn promotes better energy management, more precise 

forecasting, and the best possible utilization of solar 

photovoltaic resources. 

 

Fig. 3. Solar photovoltaic projections are categorized 

using past data 

4. Methodology 

The proposed method presents the new model, which is 

LSTM combined with the NADAM optimizer. the 

approach's goal is to provide a thorough understanding of 

both the models used for time series forecasting and the 

processes involved in their implementation. 

4.1. Proposed Model: LSTM with NADAM Optimizer 

4.1.1. Long Short-Term Memory (LSTM) 

The Long Short-Term Memory (LSTM) model was 

applied in this investigation. It serves as an illustration of a 

recurrent neural network (RNN), which has been 

demonstrated to be capable of preserving temporal links in 

time series data. Fig. 4.  demonstrates the deep learning tools 

available in MATLAB that may be used to create and train 

LSTM networks. The features and classes required to create 

and train these networks are provided by this toolkit. 

Memory cells, input gates, output gates, and forget gates are 

the components of the LSTM design. These gates assist the 

network in making precise predictions by assisting it in 

forgetting unimportant information and remembering crucial 

information. Tools that make designing the LSTM model 

simple to use may be found inside of MATLAB. These 

capabilities allow the user to choose the number of hidden 

layers, the number of LSTM units in each layer, and the 

activation of the layers. 

 

Fig. 4. Shared circuitry of long- and short-term memory 

cells 

4.1.2. NADAM Optimizer  

In this paper, it uses the NADAM optimizer, a variation 

of the Adam optimizer. A technique called the Adam 

optimizer employs both momentum algorithms and variable 

learning rates. When dealing with data that is noisy or 

includes several curves, the NADAM optimizer employs the 

Nesterov Accelerated Gradient (NAG) approach to hasten 

convergence and increase effectiveness. The optimization 

toolbox in MATLAB, which contains a variety of different 

optimization techniques that may be used to train neural 

networks, is utilized to employ the NADAM optimizer. 

During training, the weights and biases of the LSTM model 

are modified using the NADAM optimizer. Depending on 

how steep the loss function's slopes are, these adjustments 

are done. 

 

Historical data on solar power output and various 

meteorological factors were meticulously gathered and 

processed. The data cleaning phase involved handling 

missing values and scaling the data to a common range, 

ensuring consistency. Following this, the dataset was divided 

into training and testing sets. Traditional statistical models 

such as ARIMA and SARIMA were employed using 

Python's statsmodels library. Optimal parameters for these 

models were determined using the auto_arima function, and 

the models were then fitted to the training data. In parallel, a 

Long Short-Term Memory (LSTM) network was 

implemented. This required preprocessing the dataset and 

formatting it appropriately for LSTM input. The architecture 

of the LSTM model was defined by specifying the number of 

hidden layers and LSTM units. The model was trained using 

the NADAM optimizer, which dynamically adjusts the 

model's weights based on the gradient of the loss function. 

To evaluate the performance of the LSTM model, its 

predictions were compared with actual values from the 

testing set. Metrics such as root-mean-square error (RMSE) 

were employed to assess prediction accuracy. Additionally, 

the training time and the model's ability to handle data 

variability were analyzed. Different optimizers, including 

SGD, RMSprop, Adagrad, and Adam, were tested with the 

same LSTM architecture. These optimizers were evaluated 

based on loss function values, prediction accuracy, and 

training duration. The analysis showed that the LSTM model 

trained with the NADAM optimizer outperformed traditional 

ARIMA models in terms of accuracy and efficiency. This 

makes the LSTM-NADAM combination more suitable for 

forecasting solar power output in large-scale solar plants. 

4.1.3.  Comparison with Other Optimizers 

➢ In addition to NADAM, MATLAB offers users a 

number of additional optimization techniques that may all be 

used to train LSTM models. 

➢ Among the often-used optimizers are the Stochastic 

Gradient Descent (SGD) method, RMSprop, Adagrad, and 
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Adam. The rate of convergence and overall performance of 

the LSTM model can both be influenced by the update rules 

and adaptive learning rate approaches used by these 

optimizers. 

➢ The same Long Short-Term Memory (LSTM) 

architecture and dataset may be used for experiments, 

allowing for performance comparisons across different 

optimizers. By analyzing variables like the loss function 

values, the precision of the predictions, and the training 

duration, we can gauge how effective each optimizer was in 

training the LSTM model. The advantages and disadvantages 

of several optimization strategies are discussed in this article, 

along with how successfully they may be applied to time 

series forecasting tasks. 

➢ Based on the characteristics of their dataset and the 

unique requirements of their problem, academics and 

practitioners may benefit from this discussion in choosing 

the optimizer that is most appropriate for their time series 

forecasting challenge. 

➢ Fig. 5. shows the main flowchart of the 

recommended method. 

 

Fig. 5. The suggested model's data flowchart 

5. Experimental Design  

This section details the methodology employed to 

evaluate the effectiveness of ARIMA, SARIMA, and LSTM 

models in forecasting time series data. The experimental 

design includes several key steps: 

1. Dataset Preparation: The data is preprocessed and 

organized to ensure it is suitable for model training and 

testing. 

2. Implementation of ARIMA and SARIMA Models: 

These models are configured and applied to the dataset, 

following standard procedures to ensure accurate results. 

3. Implementation of the LSTM Model with NADAM 

Optimizer: The LSTM model is set up and optimized using 

the NADAM optimizer, a process meticulously described to 

facilitate reproducibility. 

Each of these steps is comprehensively detailed to 

provide clarity and enable others to replicate the study. The 

evaluation metrics used to compare the models' performance 

include root mean square error (RMSE), accuracy, and 

computing speed, ensuring a thorough analysis. Furthermore, 

the study examines the impact of various optimization 

algorithms on the LSTM model to evaluate improvements in 

accuracy and convergence. This holistic approach provides a 

robust comparison of the models' capabilities in time series 

forecasting. 

5.1. Dataset Preparation  

For this research, the "Pasion et al. dataset" was used. 

The first column of this set of data contains information 

regarding time. The data set is presented as a table, where 

each column denotes a particular variable or feature and each 

row denotes a specific time point. The dataset is initially 

prepared for research and cleaned up before the models are 

used. This calls for scaling the data, accounting for any 

missing values, and dividing it into training and testing sets. 

5.2. Implementation of ARIMA and SARIMA Models 

By employing the appropriate techniques from Python 

tools like stats models or arima, the "Pasion et al. dataset" is 

utilized to evaluate the ARIMA and SARIMA models. The 

parameters (p, d, q, P, D, and Q) are determined using the 

auto_arima technique before the models are "fitted" to the 

training set of data. The effectiveness of the models' future 

predictions is assessed using metrics including root-mean-

square error (RMSE), accuracy, and processing speed. 

5.3. Implementation of LSTM with NADAM Optimizer  

The "Pasion et al. dataset" has to be preprocessed and 

converted into the proper format for LSTM input before the 

LSTM model can be utilized with the NADAM optimizer. 

The training and testing set of the dataset are then separated, 

and the LSTM network's architecture is described. The 

model is taught using the training set, and then the NADAM 

optimizer is used to improve the model. By contrasting the 

predicted values of the model with the actual values from the 

testing set, the LSTM model's accuracy is assessed. 

 

6. Results and Discussion 

6.1. Results using ARIMA 

A variable dataset with 13 months of data was used to 

train the time-series method ARIMA model. Figure (6) The 

model had the lowest Mean Squared Error (MSE) and Root 

Mean Squared Error (RMSE), and it also gave the best 

results. The RMSE values for the various days included in 

the dataset are comparable, as shown in Fig. 6. 
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Fig. 6. ARIMA model data set featuring a forecast graph and 

Root mean squared error values over a range of days 

6.2. Results using SARIMA 

The time-series approaches used by SARIMA, which is 

relatively similar to ARIMA, were developed on data that 

spans thirteen months. Fig. 7. demonstrates that when the 

model was assessed during a training period, it had the best 

performance in terms of RMSE and MSE. Figure (7) 

demonstrates that the RMSE values for the various test 

dataset days were similar to one another. 

 

 

Fig. 7. SARIMA model data set featuring a forecast graph 

and Root mean squared error values over a range of days 

6.3. Results using LSTM with NADAM 

The neural network-based LSTM model was 

implemented successfully utilizing the provided strategy. 

The NADAM optimizer was used throughout through the 

training. Lower RMSE and MSE values were produced as a 

result of the LSTM model and NADAM optimizer combo 

since the predictions were more accurate. Fig. 8. displays the 

forecast that was produced using LSTM models, Fig. 9.  

displays the RMSE values that were computed for each day 

of the dataset. Each test dataset's RMSE curve remained 

within the same broad range the whole time. 

 

Fig. 8. NADAM LSTM 

 

 

Fig. 9. NADAM LSTM RMSE 

 

7. Comparison and Analysis of Results  

To determine how effectively the data from the ARIMA, 

SARIMA, and LSTM models can forecast time series, they 

are contrasted and evaluated. The models' accuracy and 

running costs are calculated using the evaluation metrics, 

which also include root mean square error (RMSE), 

accuracy, and computing speed. The advantages and 

disadvantages of each model are discussed, and it is made 

clear how well they perform in projecting projects and with 

various types of time series data. 

Table 1. Appearance properties of accepted manuscripts 

Method RMSE 
Ep

och 
Time 

NADAM LSTM 0.00756 500 26 second 

ADAM LSTM 1.2279 500 72 min 
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SGD LSTM 0.75 500 70 min 

RMSprop LSTM 0.8 500 75 min 

ARIMA 6.3396 - 1 min 

SARIMA 7.3102 - 1 min 

 

To assess the effectiveness of ARIMA, SARIMA, and 

LSTM models in time series forecasting, we compare and 

analyze their performance using key evaluation metrics: root 

mean square error (RMSE), accuracy, and computing speed. 

This analysis highlights the strengths and weaknesses of each 

model across various scenarios. Additionally, we evaluate 

the impact of different optimization algorithms on the LSTM 

model, offering insights into their ability to enhance accuracy 

and convergence. 

7.1. Comparison of ARIMA, SARIMA, and LSTM Models  

To determine how effectively the data from the ARIMA, 

SARIMA, and LSTM models can forecast time series, they 

are contrasted and evaluated. The models' accuracy and 

running costs are calculated using the evaluation metrics, 

which also include root mean square error (RMSE), 

accuracy, and computing speed. The advantages and 

disadvantages of each model are discussed, and it is made 

clear how well they perform in projecting projects and with 

various types of time series data. 

7.2. Comparison of Optimization Algorithms  

The performance of the LSTM model using the 

NADAM optimizer is examined and compared to the 

performance of several optimization methods as shown in 

table 2, including SGD, Adam, RMSprop, and others. 

Utilizing the evaluation metrics, it is possible to assess how 

effective each optimizer is at improving the accuracy and 

convergence of the LSTM model. The results reveal how 

various optimization techniques used in time series 

forecasting impact the LSTM model's performance and 

provide some new insights. 

After examining the output from several models, it is 

obvious that the optimization carried out using the NADAM 

optimizer was unquestionably required to get the forecast to 

the desired level of accuracy. The proposed LSTM model 

outperformed the ARIMA and SARIMA models as well as 

models that employed other optimization techniques when 

applied with the NADAM optimizer. The extensive 

comparison and analysis demonstrated how well the 

recommended LSTM model, when coupled with the 

NADAM optimizer, can forecast time series data. 

     Table 2. Comparison of Optimization Algorithms 

Study                     Year       Ref.         Forecasting para.            Forecasting Method      Forecasting Horizon     

                                        

 Sophie et al             2022        [24]               PV Power              LSTM with Nadam optimizer               30-60 days 

 

Rana et al.                2016        [25]              PV Power                 APSO-ELM                                          5-60 min 

 

Abdel-Nasser et al    2019       [26]               PV Power                  LSTM                                                   1h 

 

Lee et al.                   2018         [27]             PV Power                LSTM - (CNN)                                  Next day 

 

Jung et al.                 2020          [28]              PV Power                   LSTM                                             Monthly 

 

Yongsheng et al.        2020      [29]               PV Power         Extreme Learning Machine -LSTM             1 day 

 

Gao et al.                    2019       [30]              PV Power                       LSTM                                               1h 

 

Mei et al.                    2020       [31]              PV Power     LSTM-Quantile Regression Averaging (QRA)     Day ahead  

 

 
8. Conclusion 

This research introduces an innovative long-term solar 

power forecasting method that leverages the Nadam 
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optimizer in conjunction with LSTM neural networks. Our 

approach surpasses conventional techniques by effectively 

addressing the specific challenges posed by large-scale SPV 

plants. By incorporating a range of meteorological variables, 

we achieve more accurate projections. The enhanced 

forecasting accuracy profoundly influences the design, 

operation, and optimization of solar power systems. It 

facilitates improved grid integration, energy management, 

and maintenance scheduling. This study provides a scalable 

solution that can be adapted to different climates and 

locations, which is vital for the expanding renewable energy 

industry. In summary, the integration of the Nadam 

optimizer with LSTM neural networks marks a significant 

advancement in solar power forecasting. Future research will 

aim to further refine the model, integrate additional data 

sources, and investigate applications in other renewable 

energy systems. This work supports the transition to 

sustainable energy and efforts to mitigate climate change. 
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